引用本文
  • 何波.多项式xn-bx-a的二次不可约因式[J].广西科学,2005,12(1):8-9,13.    [点击复制]
  • He Bo.The Irreducible Quadratic Factorizations of the Polynomial xn-bx-a[J].Guangxi Sciences,2005,12(1):8-9,13.   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 415次   下载 425 本文二维码信息
码上扫一扫!
多项式xn-bx-a的二次不可约因式
何波
0
(四川省隆昌县响石中学, 四川隆昌 642152)
摘要:
n>4,fb(x)=xn-bx-aZ[x],其中a,b≠0,nN,a,bZ.讨论b=±1时fb(x)的二次不可约因式.证明:x6-x-aZ[x]中没有二次不可约因式;若f-1(x)在Z[x]中有二次不可约因式,除了n≡2(mod 3),a=-1,g(x)=x2+x+1情况外,必有n=5,a=±6或n=13,a=±90,且g(x)=x2±x+2.
关键词:  多项式  二次不可约因式  本原素因数  整系数  Lucas数
DOI:
投稿时间:2004-08-04修订日期:2004-10-12
基金项目:四川省教育厅自然科学基金(2004B025)资助项目。
The Irreducible Quadratic Factorizations of the Polynomial xn-bx-a
He Bo
(Longchang Xiangshi Middle School, Longchang, Sichuan, 642152, China)
Abstract:
Let n>4,fb(x)=xn-bx-aZ with a,b≠0,n∈N,a,bZ.We have discussed the irreducible quadratic factorizations of the polynomial fb(x) with b=±1.We proved that:x6-x-a has not irreducible quadratic factorizations in Z[x];f-1(x) has an irreducible quadratic factorization g(x) in Z[x] witch is monic,then either n≡2(mod 3),a=-1,g(x)=x2+x+1,or n=5,a=±6,or n=13,a=±90,g(x)=x2±x+2.
Key words:  polynomial  irreducible quadratic factorizations  primitive divisors  intergral coefficient  Lucas numbers

用微信扫一扫

用微信扫一扫