引用本文
  • 周永权,刘宣会.基于Hensel构造的回归神经网络符号计算模型及算法[J].广西科学,2003,10(3):176-178,182.    [点击复制]
  • Zhou Yongquan,Liu Xuanhui.Recurrent Neural Networks Symbol Computation Model and Algorithm Based on Hensel Construction[J].Guangxi Sciences,2003,10(3):176-178,182.   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 388次   下载 423 本文二维码信息
码上扫一扫!
基于Hensel构造的回归神经网络符号计算模型及算法
周永权, 刘宣会
0
(广西民族学院数学与计算机科学系, 南宁市大学路80号 530006)
摘要:
将传统意义下Hensel构造提升的方法与回归神经网络模型有机地结合起来,提出一种基于Hensel构造方法的回归神经网络近似代数符号计算新模型和PFRNN网络算法.该模型不但具有回归神经网络的特点,而且具有Hensel构造提升的思想,给人们研究代数符号计算与近似代数符号计算提供一种可视化手段.通过多元多项式近似因式分解算例分析可以看出,新模型刻划出在符号计算意义下精确计算与近似计算的本质与联系.
关键词:  回归神经网络  Hensel构造方法  近似分解  代数符号计算
DOI:
投稿时间:2002-11-18
基金项目:广西自然科学基金(0141034)及广西高校百名中青年学科带头人的资助。
Recurrent Neural Networks Symbol Computation Model and Algorithm Based on Hensel Construction
Zhou Yongquan, Liu Xuanhui
(Dept. of Math. & Comp. Sci., Guangxi Univ. for Nationalities, 80 Daxuelu, Nanning, Guangxi, 530006, China)
Abstract:
Under the traditional Hensel construction method and recurrent neural networks model,a new recurrent neural networks symbol algebra symbol computation model and PFRNN Algorithm based on Hensel construction is proposed.It has the characteristics of traditional RNN and the capability of function approximation,and may offer a kind of visual means for studying algebra symbol calculation and approximate algebra symbol calculation.Through multivariate polynomials approximate factorization,the essences and relationships between approximate calculation and accurate calculation are explained.
Key words:  recurrent neural networks  Hensel construction method  approximate factorization  algebra symbol computation

用微信扫一扫

用微信扫一扫