引用本文
  • 王云葵.关于Bernoulli数与Bowen猜想[J].广西科学,2000,7(1):14-16.    [点击复制]
  • Wang Yunkui.On the Bernoulli Numbers and Bowen's Conjecture[J].Guangxi Sciences,2000,7(1):14-16.   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 367次   下载 406 本文二维码信息
码上扫一扫!
关于Bernoulli数与Bowen猜想
王云葵
0
(广西民族学院数学与计算机科学系, 南宁市西乡塘 530006)
摘要:
获得了等幂和与Bernoulli数的同余关系,利用所得到的结果对Bowen猜想进行了讨论,得:若方程Sm(n)=(n+1)mm >1的解,则m≥28为偶数,6nBm≡ 6(mn+1)(mod n2),n=2p1p2pS,pi-1|m,(n/pi)≡ m((pi-1)!+pi+1)-pi-1(mod pi2).
关键词:  等幂和  Bernoulli数  Bowen猜想
DOI:
投稿时间:1999-06-22
基金项目:第四届全国初等数学研究学术交流会学术报告和广西民族学院重点科研项目资助课题。
On the Bernoulli Numbers and Bowen's Conjecture
Wang Yunkui
(Dept. of Math. & Comp. Sci., Guangxi Univ. for Nationalities, Xixiangtang, Nanning, Guangxi, 530006, China)
Abstract:
We gain congruences relation of sum of equal powers and Bernoulli's numbers,and Bowen's conjecture was discussed by using our theorems on the structure of Bernoulli's numbers,Acquired that if Sm(n)=(n +1)m and m>1,then m ≥ 28 is an even number, 6nBm≡6(mn+1)(mod n2),n=2p1p2ps,pi-1 dividing of m,(n/pi)≡m((pi-1)!+pi+1)-pi-1(mod pi2).
Key words:  sum of equal powers  Bernoulli's numbers  Bowen's conjecture

用微信扫一扫

用微信扫一扫