摘要: |
以Nevanlinna理论来研究方程f″+A(z)f'+B(z)f=F(z)的解的零点分布,其中A(z),B(z),F(z)≢0均为有穷增长级整函数。得出的主要结果是定理1和定理2。 |
关键词: 二阶非齐次线性微分方程 零点序列 收敛指数 |
DOI: |
投稿时间:1996-06-03 |
基金项目: |
|
On the Complex Oscillation of Solutions of Second Order Non-homogeneous Linear Differential Equations |
Wang Sheng
|
(Dept. of Math., West River University, Zhaoqing, Guangdong, 526061) |
Abstract: |
Nevanlinna theory is used to investigate the zeros distribution of solutions of f″+A(z)f'+B(z)f=F(z), where A(z),B(z),F(z)≢0 are all entire functions of finite order of growth, and obtain Theorem 1 andTheorem 2. |
Key words: second order non-homogeneous linear differential equation zero-sequence exponent of convergcnce |