引用本文: |
-
杨绿峰,李桂青,秦荣.高次广义参数单元及其应用[J].广西科学,1996,3(4):48-52. [点击复制]
- Yang Lufeng,LI Guiqing,Qin Rong.The Quintic Generalized Coefficient Element and Its Applications[J].Guangxi Sciences,1996,3(4):48-52. [点击复制]
|
|
摘要: |
利用5次插值样条函数,将二阶Hermite梁单元加以改进,使其具有明确含义的结点参数广义化,从而使高阶单元能够应用于曲率不连续的变截面梁、板、壳等结构中。算例表明这种高阶广义参数单元不仅保持了5次Hermite单元及5次样条函数的优点,并且克服了其不能直接应用于曲率不连续的变截面结构中的缺点。 |
关键词: 有限元 样条函数 广义参数 |
DOI: |
投稿时间:1996-07-16 |
基金项目: |
|
The Quintic Generalized Coefficient Element and Its Applications |
Yang Lufeng1, LI Guiqing2, Qin Rong3
|
(1.Dept. of Civil Engineering, Guangxi University, 10 Xixiangtang Road, Nanning, Guangxi, 530004;2.Wuhan University of Technology, Wuhan, Hubei, 430070;3.Dept. of Civil Engineering, Guangxi Univ., 10 Xixiangtang Road, Nanning, Guangxi, 530004) |
Abstract: |
The quintic B-spline functions were used to adapt the common hermite beam element into a new kind of generalized quintic element.This new kind of high-order element has generalized nodal coefficients,and can be used to compute the beams whose curvity are uncontinuous.Examples in this paper show that the high-order generalized element keeps both the merits of quintic hermite elements and spline functins. |
Key words: finite element spline functions generalized coefficient |