引用本文
  • 宣泽永,熊文.关于σ-局部可数弱基[J].广西科学,1995,2(4):15-16.    [点击复制]
  • Xuan Zeyong,Xiong Wen.On σ-locally Countable Weak Bases[J].Guangxi Sciences,1995,2(4):15-16.   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 333次   下载 407 本文二维码信息
码上扫一扫!
关于σ-局部可数弱基
宣泽永1, 熊文2
0
(1.广西大学数学与信息科学系, 南宁市西乡塘路 530004;2.广西交通学校, 南宁市园湖路 530023)
摘要:
证明如下主要定理:(1)σ-局部可数弱基在开、闭Lindelöf映射下保持.(2)设XYσ-局部可数弱基,则X×Yk-空间的充分必要条件是下列之一满足:(a)XYσ-局部可数基,(b)XY为局部紧度量空间,(C)XY有-σ-局部有限且由紧子集构成的弱基.
关键词:  弱基  σ-局部可数  开映射  闭Lindelöf  映射  S2
DOI:
投稿时间:1995-03-27
基金项目:广西区教委基金
On σ-locally Countable Weak Bases
Xuan Zeyong1, Xiong Wen2
(1.Dept. of Math. & Inf's Sci. Guangxi University Xixiangtang Road, Nanning, Guangxi, 530004;2.Traffic School of Guangxi, Yuanhu Road, Nanning, Guangxi, 530023)
Abstract:
Two main theorems are proved:(1) A σ-locally countable weak base is preserved under open and closed Lindelöf mappings. (2) Suppose that both X and Y have a σ-locally countable weak base then X×Y is a k-space if the following holds:①Both X and Y have a σ-locally countable base.② X or Y is a locally compact and metrizable space. ③ Both X and Y have a σ-locally countable weak base formed by compact subsets.
Key words:  weak base  σ-locally countable  open maps  closed Lindelöf maps  S2

用微信扫一扫

用微信扫一扫