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Cycles Embedding in d - Ary n - Dimensional Cube With Node
Failures "

LI Zhaoxiang
(College of Science,Minzu University of China, Beijing,100081,China)

Abstract: The d-ary n-dimensional cube (the general form of hypercube) has been widely used as the inter-
connection network in parallel computers. The fault-tolerant capacity of an interconnection network is a criti-
cal issue in parallel computing. In this article, we consider the fault-tolerant capacity of the d-ary n-dimen-
sional cube. Let I be a set of faulty vertices in Q, (d) (n==3) with |F|<{n — 2, we prove that every fault-free
edge and fault-free vertex (node) of Q, (d) lies on a fault-free cycle of every even length from 4 to d" —
2|1 F|. Moreover,if d is an odd number,every fault-free edge and fault-free vertex (node) of Q, (d) lies on a
fault-free cycle of length d" = 2| F|.
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set V=Ax,ayx,:x,€{0,1,,d, - 1},i=1,

0 Introduction '
2,++,n} and two vertices x = x;x, "

x, and y =

Network topology is usually represented by a
graph where vertices represent processor and edges
represent links between processors-'. The hyper-
cube has been widely used as the interconnection
network in parallel computers™®' . The n-dimension-
al generalized hypercube, denoted by Q(d,,d,,
d,),where d; (=2) is an integer for each i = 1,
2,++,n. The vertex-set of Q(d,.d,,**.d,) is the

y1ys2++y, are linked by an edge if and only if they
differ exactly in one coordinate. If d, =d, = ==+ =
d,=d=2,then Q (d.d,*.,d) is called the d-ary
n-dimensional cube, denoted by Q, (d). It is clear
that Q, (2) is hypercube Q, . For two vertices u and
v in Q, (d) ,the Hamming distance h (u ,v) between
two vertices u and v is the number of different bits

in the corresponding strings of both vertices; and
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the distance between u and v, denoted by D (Q,
(d)s;u,v),is the length of the shortest path be-
tween u and v. Obviously,h (u,v) =D(Q, (d);u,
v). Let u =wu uy"u, be a vertex of Q, (d) u’' =
v=wv,v, v, 1s also a vertex of Q, (d),v;, = u, (1<
I<n.i#j,j €{1,2,,n})sv;, #u,; v, =a€{0,1,
2,+,d —1}. A vertex is fault-free if it is not faulty.
An edge is fault-free if the two end-vertices and the
link between them are not faulty. A cycle of length
k is called k-cycle. A graph G is vertex-transitive if
for any given pair (x,y) of vertices in G there is
some 0 € Aut (G) (Aut(G) is an automorphism
group of G) such that y =6(x).

The cycle embedding problem deals with all
possible lengths of the cycles in a given graph,it is
investigated in a lot of interconnection networks™".
The fault - tolerant capacity of an interconnection
network is a critical issue in parallel computing™ .
For hypercube Q,, Saad and Schultz® proved that
an even cycle of length % exists for each even integer
between 4 and 2". Let f, (respectively, f,) be the
number of faulty edges (respectively, vertices) in
Q,.1f f,.<n—2,Liet al."" proved that every fault-
free edge of Q, (n2=3) lies on a fault-free cycle of
every even length from 4 to 2". If f,<{n — 1 and all
faulty edges are not incident with the same vertex,
Xu et al. "' showed that every fault-free edge of Q,
(n=4) lies on a fault-free cycle of every even length
from 6 to 2". Fu"™ proved that a fault-free cycle of
length with at least 2" =2/, can be embedded in Q,
with f,<<2n —4.1f f,<<2n — 2, Tsai” proved that
every fault-free edge and fault-free vertex of Q, lies
on a fault-free cycle of every even length from 4 to
2" —2f..Stewart and Xiang™ studied the bipancon-
nectivity and bipancyclicity in k-ary n-cubes. Cheng

1 [9]

et a studied the vertex-fault-tolerant cycles em-

bedding in balanced hypercubes with faulty edges;

l. " studied the hamiltonian cycle embed-

Hao et a
ding for fault tolerance in balanced hypercubes.

In this article, we study the cycle embedding in
Q, (d). For any subset F of V(Q, (d))(n=3) with
|F|<<n —2,we prove that every fault-free edge and

fault-free vertex (node) of Q, (d) lies on a fault-free

cycle of every even length from 4 to d" — 2| F|. If

d = 2,these results are the results of Tsai"*.
1 Preliminaries

The n-bit Gray code is a ring sequence of n-bit
numbers (the number of each coordinate is selected
frOm {091’25"'

sive numbers have one and only one different bit and

,d —1}) such that any two succes-

so that all numbers having n bits are represented.
The n-bit Gray code is denoted by G,. If d is an e-
ven number. One starts with the sequence of the d
1-bit numbers 0,1,2,++-,d — 1. This is a 1-bit Gray
{0,1,2,+,d —1}. To obtain a 2-bit

Gray code G, ,take the same sequence and insert a

code,i.e. .G, =

zero in front of each number, then take the sequence
in reverse order and insert a one in front of each
number, take the same sequence and insert a 2 in
front of each number, then take the sequence in re-
verse order and insert a 3 in front of each number,
take the same sequence and insert a d — 2 in front of
each number, then take the sequence in reverse or-
der and insert a d — 1 in front of each number. In
other words,from G, ={0,1,2,+,d —1},we get a
2-bit Gray code G, = {00,01,+-,0(d —2),0(d — 1),
1d—-1),1(d —2),++,11,10,++-,(d —2)0,(d — 2)
1,o.(d=2)d=-2),(d-2){d-1),(d—-1){d -
D.d-1)d-2),,(d —1)1,(d —1)0}. More
generally s denoted by G¥ the sequence obtained from
G, by reversing its order, and by mG,.m = 0,1,
2,++sd — 1 (respectively, mG*) the sequence ob-
tained from G, by inserting a m in front of each ele-
ment of the sequence, then an (n + 1) — bit Gray
{0G, .
1G%,2G,,3G% -, (d —2)G, . (d —1GE ). 1f d is

an odd number,Gray codes can be similar to gener-

code can be generated by the recursion G, ., =

ate.

Let V, be the set of vertices of Q, (d). For a
given i (0<{i<<d — 1),let iV, _; be the subset of ver-
tices of Q, (d) whose fist coordinate is i. Thus the
set of vertices of Q, (d) can be decomposed into d
disjoint subsets OV, ;,1V, ;,+,(d — 1DV, ;. We
use iQ,_, (d) to denote the subgraph of Q,(d) in-
duced by iV,_,. Then iQ,-, (d) is isomorphic to



Q,-.(d). It is often convenient to write Q, (d) =
0Q,-.(d)0B1Q, -, (d)B---B0(d -1)Q,-,(d).

Lemma 1 Let u and v be two distinct vertices
of Q,(d). Then,there is a partition which can parti-
tion Q, (d) into d copies Q,_,(d) sdenoted by Q" _,
(d)@|0,1,++,d —1) such that u € V(Q)_, (d))
and v €V(Q)r_, (d)) (m k€ {0,1,2,,d — 1},
m#=ky.

Proof

Let u = uju, *u, and v = vyv, ***v,,.
Since u and v are distinct vertices, there is an index
717G €{1,2,+,n} such that u; #v;,u, €{0,1,-,
d—1},v,€{0,1,,d — 1}. Therefore,Q, (d) can
be partitioned along dimension j into d copies Q,
(d ) such that one contains u and the other
contains v.

Lemma 2 Let e = (u,v) be an edge of Q,
(d). Then, there is a partition which can partition
Q,(d) into d copies Q,-,(d) sdenoted by Q}_, (d)
(i=0,1,+,d — 1) such that « €V (Q”_,(d)) and
vEeEVQ) 1 (d)(m€{0,1,2,d—1}).i.e. e is
an edge of QU (d).

Proof Let ¢ = (u,v) be an edge of Q, (d),
UT Uy U, sV =V U, v, sthen,there is an index ¢
(i€{1,2,-+,n}) such that u;, v, u; =v; (1<j <
n,j #1i). Therefore,Q, (d) can be partitioned along
dimension j into d copies Q,_; (d) such that e€

E(ngl-l(d))(me {071727'"7d _1}).
2 d is an even number

Theorem 1 Let x and y be any two vertices in
Q,(d)(n=2) and [ be any integer with D(Q, (d);
r,y)<I<d" —1.1f d is an even number and [ —
D(Q,(d);x,y) is also an even number, then there
is an xy-path of length / in Q, (d).

Let D(Q, (d);xsy) =m. The proof is

based on the recursive structure of Q, (d) by induc-

tion on n=2. When n = 2,if D(Q,(d);x.y) =1.By
)[3]

Proof

the vertex-transitivity of Q, (d , without loss of

generality,we can assume x =00,y = 01.
x=00—>01=y,x=00—>02—>03—>01=y,x =

00—>02—>03—>04—>05—>01=y,+,x = 00—>02—>03—

04—>05—>++—>0(d —2)—>0(d —1)—01 =y are the
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xy-path of length [ =1,3,5,-,d —11in Q,(d).

x =00—~>10—>12—>02—>03—>04—>05—>+--—>0(d —
2)>0(d - 1)—=>01=y.x =00>10>20—>22—>12—
02—>03—>04—>05—>--—>0(d —2)—>0(d —1)—>01=
y. .2 =00>10—>20—>30—>40—>--—>(d — 2)0—>
(d-1D0>(d-1D2>(d —2)2—>+-—>22—>12—>02—
03—>04—>05—>--—>0(d —2)>0(d —1)—=>01 = y. --.
x=00—>10—>20—>30—>40—>+-—>(d —2)0—>({d — 1)
0> d-1)2—>(d -2)2—>+-—>22—>12—>02—>03—
13—>23—>+—>(d —2)3—=>(d - 1)3—>(d - 14— ({d -
2)4—>++—>24—>14—>04—>05—>+—>0(d — 1)—>1(d —
D—>20d-1)—>—>(d-2){d-1)—>({d -1
d-D—>d-D1>d-2)1>—>21>11>01=y
are the xy-path of length{=d +1,d +3,-+-,3(d —
1,ed?=1inQ,(d).

When n=2,if D(Q,(d);x,y) =2. By the ver-

1, without loss of general-

tex-transitivity of Q,(d)
ity,we can assume x =00,y =11,

x =00—>10—11=y,x =00—>20—>30—>10—>11=
y.x=00>20—>30—>40—>50—>10—>11 =y, -, & =
00—>20—30—>40—>50—>++—>(d —2)0—>(d - 1)0—
1011 =y are the xy-path of length { =2,4,6,---,
d in Q,(d).

x=00—>01>21—>20—>30—>40—>50—>+--—>(d —
2)0—>(d -10—~>10—~>11=y.x =00—>01—>02—>22—
21—>20—>30—>40—>50—>—>(d - 2)0—>(d —1)0—>
10—>11=y. .2 =00—>01—>02—>+-—>0(d —2)—>0
(d—-—1)—>2(d - 1)—>2(d —2)—>++—>22—>21—>20—>
30—>40—>-(d —3)0—>(d —2)0—>(d —1)0—>10—>
11=y.. 2=00>01—>02—>+-—>0(d —2)—>0(d —
D—=>2(d -1)—>2(d —2)—>+—>22>21>20—>30—>
31>32—>+-—>3(d —2)=>3(d —1)—=>4(d - 1)—>
4(d —2)—>—>42>41>40—>+-—>(d —3)0—~>({d —
D1>(d —3)2—>—>(d —-3){d —-2)>(d - 3)
d-D—>d-2)d~-1)>0d -2)(d =2)>—
(d=2)2—>d-2)1>(d —-2)0>(d - 1)0—~>{d —
2= d-1)3—>—>(d-1{d-2)>{d—-1){d —
D—=>1d -1)—~>1(d - 2)—>--—>13—>12—>10—~>11=y
are the xy-path of length l=d +2,d +4,++,3d —
2,0.d” =2 in Q,(d).

Assuming the theorem holds for any # with 2<C
EF<n.letx =x,x,**x, and y = y,y,*y, be any

two vertices with distance m in Q, (d) and let / be



I ARE,2021 ££,28 %, 5 4 #] Guangxi Sciences,2021,Vol. 28 No. 4

an integer with m<<{/<{d" — 1 and [ — m is an even
number. Let Q, (d) = 0Q,-, (d)0O1Q,_, (d) O -
0d-DQ, ().

Casel m<n

By the vertex-transitivity of Q, (d)", without
loss of generality, we can assume x,y € V(0Q, -,
(d)). By the induction hypothesis, there is an xy-
path of length / in Q, (d) ,where m<{<<d" ' — 1.

Assuming d" '<XI<<2Xd" ' — 1. Let P, be the
longest xy-path in 0Q,-, (d) ,the length of P, is /p
and lp, —m is an even number. We have lp, =
d" ' =1 if m is odd and Lp, =d" ' =2 if m is even.
Letl, =1 —1p, — 1. Then [, is odd and less than
d" '.Let uv be any edge in Py,and u,v € 0Q,_,
(d)yu#xu# y,v#*x,v7#y. Then P, = P,
uv + Pow .Let u’" and ©" be neighbors of « and v in
1Q, (d). By the induction hypothesis, there is a
u'v'-path P, of length /, in 1Q,_,(d). Then P,
wu' + P, + oo+ PUW is an xy-path of length [ in
0Q,-,(d)B1Q,, (d>), this is also an xy -path of
length [ in Q, (d).

Assuming 2 X d" '<I<K3Xd" ' = 1. Let Py, be
the longest xy-path in 0Q,_, (d) ®1Q,_, (d), the
length of Py is lp, and lp, —m is an even number.
We have lp, =2 Xd" ' =1if m is odd and lp, =2X
d" ' =2 if m is even. Let [, =1 —lp, — 1. Then Z, is
odd and less than d"~'. Let u, v, be any edge in P, »
and u,,v, €1Q, ,(d)yu, Zu su, #v v, #u v, #
v’. Then P,, = PO]M1 tuv, + Py - Let ', and v,’

be neighbors of u; and v, in 2Q,_, (d). By the in-
duction hypothesis, there is an «’,v,” -path P, of
length [, in 2Q,_, (d). Then Py + w,u, + P, +

v, v, +P01v1y
01Q, ,(d)>B2Q,_, (d),this is also an xy-path of
length / in Q,(d).

Assuming (d — 1) X d" '<<I<<d" — 1. Let
Py...; » be the longest xy - path in 0Q, ; (d)
01Q, (d)B-B(d —2)Q,_, (d),the length of

and lp =~ —m is an even
number. We have Py..umny =(d = 1D Xd" ' =1 if m
is odd and Pgjcysy = (d = 1) Xd" ' =2 if m is e-

is an xy-path of length / in 0Q, ,(d)

Popea-» 18 lP(Jln-(d—Z)

ven. Let [, =1 —1[p — 1. Then [, is odd

01-+(d = 2)
and less than " '. Let u,_,v,_, be any edge in
Poco-psand uy v, ,€0d =2)Q, 1 (d)suy 7
U/d—s ’ud—ziv/d—s 9”4—2;&74/(1—3’7111—27&7/(1—&Then

+ +

Pocca-2 P01---(d—2>” Ug-2TVg-2

4 /7 .
POI---(L]*Z) . Let u d-2 and v d-2 be nelghbors Of
Yd-2”

u,-p and v,_, in (d —1)Q,-, (d). By the induction
hypothesis, there is an «’,_,v ,_, - path P,_, of
length /,., in (d - 1) Q,., (d). Then
, +ouyou gy T Pyuy F vy vg, +

P(Jl"'(d*Z) §
Ty

Popca-o
Yd -

is an xy-path of length / in Q, (d).
2¥

Case2 m=n

By the vertex-transitivity of Q, (d)"* . without

loss of generality,we can assume x €V (0Q,_,(d)),
y€VQ,-,(d)). Let v be a neighbor of y in 1Q, -,
(d),u be the neighbor of v in 0Q,_; (d). Then
D, (d)sxsu)=n—2.

If n<<[<<{d"~'+1. By the induction hypothesis,
there is an xu-path P of length / =2 in 0Q, -, (d),
Then P + uv + vy is an xy -path of length [ in
Q,(d).

Ifd" ' +2<</<<2Xd" ' -1.Let P, be the lon-
gest zu-path in 0Q, -, (d), the length of P, is [
and /p, — m is an even number. We have lp, =
d" ' =1if m is odd and Ly, =d" ' =2 if m is even.
Letl, =0 —1p — 1 Then [, is odd and less than
d"~'. By the induction hypothesis,there is a vy-path
P, of length [, in 1Q,-,(d). Then P, + uv + P, is
an xy-path of length / in 0Q, -, (d)0®1Q,_, (d) ,this
is also an xy-path of length / in Q, (d).

If 2Xd" '<<[<3Xd" ' —1.Let Py be the lon-
gest xy-path in 0Q,_,(d)®1Q,_,(d) ,the length of
Py is lp, and lp, —m is an even number. We have
Ly, =2Xd" ' =1if m is odd and Ly, =2Xd" ' -2
if m is even. Let [, =1 — Ly, — 1. Then [, is odd and
less than d"”'. Let u,v, be any edge in P, sand u, »
v,€1Q, (d)yu, Fv.u, #y.v, #v,v, 7y. Then
P, = P‘”ml + w,v, + Pm“lv. Let «’, and v’, be
neighbors of u; and v, in 2Q,_, (d). By the induc-
tion hypothesis,there is an «’,v’,-path P, of length
l,in 2Q,_,(d). Then Py wu  +P,+0 v, +

1



P, is an xy-path of length / in 0Q,_,(d)01Q,
'UIV

(d)B2Q,_, (d),this is also an xy-path of length
in Q, (d).

The rest of the proof is similar to Case 1.

By the induction principle, the theorem fol-
lows.

Applying Theorem 1,we have

Corollary 1  For any n =2, every edge of
Q,(d)(d=2,d is an even number) lies on a cycle
of every even length from 4 to d".

Applying Theorem 1. If d =2,we have

2% Let x and y be any two verti-

Corollary
ces in Q, (n=2) and [ be any integer with D (Q, ;
Toy)<U<2'-1.1f 1 -D(Q,;x,y) is an even
number,then there is an xy-path of length / in Q,.

Let F be a set of faulty vertices in Q, (d).

Lemma 3 For any subset F of V(Q,(d))(d=
4,d is an even number) with | F|<{1,every edge of
Q,(d) — F lies on a fault-free k-cycle,k = 4,6, -,
d*=2|F]|.

Proof In this article, the operation is modulo
d. By corollary 1, we only consider | F | = 1. Since
Q. (d) is vertex-transitive'” , without loss of gener-
ality,we may assume that the faulty vertex is w =
00.Let e = (u,v)=(x, x, »a, x, ) be a fault-free
edge of Q,(d). We may assume that x,; #0(x, =0
is similar) , (x, x, »x, (s t 1),z (2, +2i),
...,dz;z;lf x, tj =

xy 5 =1,2,-,2i,2, +j is replaced by x, +2i +

i x,  saxixs) (i =1,2,

1 is a (2i +2)-cycle and contains the edge e.

(2] xy sa, (g + 1)) (xy +d—2),2,
(g3 +d =Dy (x) +E)(xy +RXd-1)),
(x) +h)(x, TEXUA =D+, (x] TE)(x, +
kX (d —1)+20).(x] +h)x, a2, x5
d-2
T2
x, + k is replaced by x, + £ + 1. If 2, =
(xy +EX(d—-1)+j ) modd,j=1,2,-
EX(d —1) +j is replaced by x, + &2 X (d —1) +
2:+1) is a (kXd +2{ +2)-cycle and contains the

’1'1*.%; )

(k=1,2,+,d—2;:=0,1,- s a) +£=0,

'721.91; +

edge e.
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We may assume that x, * #0(x, " =0 simi-
lar) s () x4 sxy (xy T 1) yeryx) (2, +d—2),x]
(g +d — 1), (x] +1)(xy, +d—-1),(x;y +1)
(g *d)s s (xy T D (xy +2X0d—1)), -,
(27 +d—2)(xy, +(d-20d-1),(xy +d—2)
(g +d=2)d -1+, (x] +d —-2)(x, +
d-Dd-1»,0(x;, +d-1d-1),0(x, +
d-Dd -1 +1),,0(xy, +(d—-1(d -1+
d-2

5
0=(ax, +d-DXd-1)+j) modd,j=1,2,--,
2i.x, +(d—1)X(d—1)+j is replaced by x, +
(d-DXd-D+2i+1D)isa ((d—-1)Xd+2i+
2) and contains the edge e.

Lemma 4 For any subset F of V(Q,;(d))(d=
2.d is an even number) with |F|<{1,every edge of
Q;(d) — F lies on a fault-free k-cycle,k = 4,6, -,
d’=2|F]|.

Proof By Corollary 1,we only consider | F| =
[3]

21.)’01;*"Tl*xz**hxfl“,;)’(i:O’l’.“’ 1f

1. Since Q; (d) is vertex-transitive~- , without loss
of generality, we may assume that the faulty vertex
is w =000. Let e = (u»v) be a fault-free edge of Q,
(d). By Lemma 2,Q; (d) can be partitioned into
dQ.(d) ,denoted by Q} (d),0<<i<<d —1:¢e €Q}_,
(d)me{1,2,+-,d —1}). Without loss of generali-
ty,we may assume that Q;(d) is partitioned along
dimension j (j € {1,2,3}) into dQ,(d).e € Q;(d)
(If e ¢ Q3 (d) is similar). By Corollary 1,there is a
fault-free even k-cycle in Q) (d) containing the edge
e where 4<Ck <Cd”. Thus, the cycle of every even
length from 4 to d* containing the edge ¢ in Q,(d)
can be found in Q3 (d). Let C," be a fault-free even
d?-cycle containing the edge e in Qj (d). Because
d*>=4, therefore, C; has an edge Cu,sv,)s Cuys
v,) #e,the cycle C| can be represented as (u,,v,,
P.[visu,]su,) where e lies on the path P,[ v,
uy .

WP EQE(d), v €QE(d) h (uysv,) =1,
hCuysul®)=1,h Coyao)®) =100 (i o)) = 1.
By Corollary 1, there are even cycles with lengths
from 4 to d? inclusive in Q5 (d) that each cycle con-

tains the edge («}?,0]?). Let C, = 0}, ul?,
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P,[u}? ,0]® ],0]®) be an even [,-cycle containing
the edge (u}® ,v4?) in Q5 (d) where 41, < d”.
Merging the two cycles C; and C,, as well as the
two edge Cuy, ul?) and (v;,0v]% ), we can con-
struct a fault-free even cycle Cy, = (v s Py vy sty s
wysul® Py [ul® 0l ] 01 s vy) which contains
e. Obviously,l1(C,) =I(P[v,su, ) + L (P, [u}?,
i D +2 where [ (P, [v,su, D) =d*—1 and [ (P,
[w]®,0)®])=1,3,++,d* — 1. Therefore,C,, is an
even cycle of length from d® +2 to 2d* and contains
the edge e.

Let Ciy... (i =2,3,++sd —2) be a fault-free even
i X d*-cycle containing the edge e. C1y...; has an edge
;o) s Cussv) € {es Cuysvg) s

the cycle Cy,..; can be represented as (u;,v;,P,..;

’ (uiflv'lll-,l)}a

Lv;su; |su;) where e lies on the path P,..;[v; su; ].
WP EeQLN(d) v ey () vh (usyu) =1,
h(u, 9ué(i+1)) = 17 h ('U,' 9 'U{“Jrl) ) = 19 h (u{(i+1) ’
vy =1, By Corollary 1, there are even cycles
with lengths from 4 to d? inclusive in Q3™ (d) that
each cycle contains the edge (u!“"V,v!“"V). Let
C[ — (v]:<i+1) ’u[(i+l> 9P'+1|:u]:(i+1) ’U_]:(i+1):|’vj:(i+1))
be an even [,.,-cycle containing the edge (u!“"",

01" in Q) (d) where 4<</,.,<<d’. Merging the

i+1

two cycles C,...; and C, . as well as the two edge

JG+1D
(u,' s U ‘

) and (v, v/ "), we can construct a
fault-free even cycle Cipiivy = (v s Prgei [0 su; s
w, sV P LT 0l Y Uy, ) which
contains e. Obviously, ! (Ciyiiy) = L (P s L,
w, D+ LCP, [l 0P ) + 2 where [ (P,
[v,su; D=iXd* =1 and [(P,,; [« 0" ]) =
1.3,-+vd® — 1. Therefore, Cyy..;+1, is an even cycle
of length from iXd*+2 to (i +1) Xd* and con-
tains the edge e.

Let Ciycy-1, be a fault-free even (d —1) X d*-
cycle containing the edge e. Ci,.., 1, has an edge
Cuyg 10y 1) Cuyg 1svg 1) E{esCuysoy) sy (uy o
v, 5) ), the cycle Ciy..u_1, can be represented as
(uyg1sv4-1sProan ["Ud—l ’ud—ljs wy 1) where e
J(0

lies on the path Po.uon Lve-1s ugoy Jo ul®

Q(d)—F.v" €Qi(d)~F.h(uyysv,,) =1,

hCug_sul®)=1,h Coyoys 04%) = 1, B (a2,
0% =1. By Lemma 3, there are even cycles with
lengths from 4 to d* = 2| F| inclusive in Q) (d) — F
that each cycle contains the edge (u’'%),v,?). Let

— j (0) j (0) j (0) j (0) j (0)
Cll) - ('Ufjfl ,ufj,l spo[ui{fl "Uilfl "Ufjfl) be an even

[, - cycle containing the edge Cu’%, vi% in
Q5(d) — F where 4<<[,<<d” — 2| F|. Merging the
two cycles Ciy..u—1, and C,, as well as the two edge
Cuy-rsud)) and Cuyys05%), we can construct a
fault-free even cycle Crpvcy—10 = (vy-1s Procu-1
[Ud—l s Ug-1 ] sUg-1> uil(i))l - Py [ufzu—))l ’ "UZJ(S)l ’ "U'Zz(iil_l) ’
v,-1) which contains e. Obviously,/(Cy..cu-1)0) =1
(P ['Ud—l ’ ud—l:l) + 1 (P, [ufz(f))l ’ 'U{/(E)l ]) +2
where I (P ity LVa-r1sugr D =(d —1) Xd* -1
and [ (P Lul® oD =1,3,+,d* - 1-2]|F].
Therefore,C,...; -1, is an even cycle of length from
(d=1)Xd*+2 tod®—2]F]| and contains the
edge e.
Similar to Lemma 4,we have

Let n=3 be an integer and Q, (d)

(d=2,d is an even number) has exactly one faulty

Theorem 2

vertex. Then,every fault-free edge of Q, (d) lies on
a fault-free cycle of every even length from 4 to
d" —2.
Theorem 3
subset F of V(Q, (d))(d=2,d is an even number)
with |F| = f,<n —2,every edge of Q,(d) — F lies

on a cycle of every even length from 4 to d" —2f,.

Let n =3 be an integer. For any

Proof We prove this theorem by induction on
n.By Lemma 4, Theorem 3 holds for n = 3. Assum-
ing that the theorem is true for every integer & (3<<
k<<n).Let F be a subset of V(Q,.,(d)) and |F| =
f..By Corollary 1 and Theorem 2, Theorem 3 holds
for f,<<1. Thus, we only consider the case of 2<C
f.<n—2.

Let w and = be two distinct faulty vertices. By
Lemma 1,Q,.,(d) can be partitioned along dimen-
sion j (j €{1,2,*+,k + 1} into d copies Q, (d) ,de-
noted by Qi (d) (i =0,1,2,+vd - 1), w€QL(d),
2€QY(d)Uyme{0,1,2,+,d -1}, F#m). Let
Fi=lFNVQLd)].i=0,1,2,.d = 1,i.e.,

d—-1
fo= 2 f:. Therefore, f, <<k —2,i =0,1,2,+,d —
i=0



1. Let e = (u,v) be a fault-free edge of Q,., (d) —
F. In order to prove this theorem, we establish every
even [-cycle containing e where 4<JI<d*"' —2f,.

Case 1:¢ € E(Q; (d) UE(Q; (d) U UE
(Qi{ ' (d))si.e. e lieson Q, (d) (i =0,1,2,+,
d —1). We only consider that e CE(Q)(d)) (e ¢ E
(QY(d)) is similar).

Since f,<<k — 2,by induction hypothesis, there
is a fault-free even [,-cycle in Q) (d) containing the
edge ¢ where 4<{[,<<d* — 2f,. Thus, the cycle of
every even length from 4 to d* — 2f, containing the

edge ¢ in Q,.,(d) can be found in Q) (d). Let C,.

be a fault-free even [ -cycle containing the edge e in

Q) (d) where I =d" —2f,. One can observe that

1
there are at least > X d* = f,—1 disjoint edges such

that each of them differs with e in the cycle C,. .
0

kt1 1
Since #==3 and > f, <k —1,§><dk —fo— 1>
i=0

k+1

.Zlf"' Therefore, C,. has an edge Cug» vy )

0
JjGm)

(uo ,"Uo)7ée,u0
v is a fault-free vertex in Q¥ (d)(m € {1,2, -,
d—=1}h Cugsud™ ) =1,h (vgsvi™ ) =1. We may

assume that m =1 (m#1 is similar) ,i.e. su}'’ is a

is a fault-free vertex in Q} (d),

fault-free vertex in Q, (d) ,v)" is a fault-free vertex

in Q, (d). The cycle C,. can be represented as (uy »
0

vos Polvgsuy Jsuy) where e lies on the path Py[ vy,
wy .

Since f,<Ck — 2, by induction hypothesis, there
are even cycles with lengths from 4 to d* — 2f, in
Q, (d) that each cycle contains the edge (u)™,
vy, Let C, = Cod "y Py L o ] 0d )
be an even /,-cycle containing the edge (u}" ,v{")
in Q; (d) where 4<<[, <<d" — 2f,. Merging the two
cycles C[J and C, as well as the two edges (u,,
wi?) and (vy,v)" ). we can construct a fault-free
even cycle Cy, = (v s Polwgsug Jsugsud® Py lud® s
o) 1, 0", vwy) which contains e. Obviously,
[(Co)=L(Pylvgsuy ) + 1 (P, [u)V 0} ] +2
where [ (Cy,) =d* = 2f, — 1,and [ (P, [u)",

vy =1,3,-,d* — 2f, — 1. Therefore, the cycle
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C,, is of length from d* —2f, +2 to 2Xd" —2(f, +
f1) and contains the edge e.
Let Coip; (i =1,2,+.d —2) be a fault-free e-

ven ((i +1) Xd*" -2 2 f.) -cycle containing the
a=0

] 1
edge e. One can observe that there are at least — X

2

G+1Dd" - 21:fu —1 disjoint edges such that each of
a=0

them differs with e in the cycle Cgp...;. Since £ =3
k+1

andeaék—l,%X(i+1)d"—i}fu—i>
a=0 a=0

k+1

> f.. Therefore, Cg..; has an edge Cu,, v; ),

a=i+1
(u;sv)€{es Cuysvy )y

fault-free vertex in Q} (d),v!"" is a fault-free ver-

texinQZ’(d)(mG{i+17i+2,"‘7d—1}),h(ui,

W) =1,h (v, 0!") =1. We may assume that

jG+1D
i

jGm) -
a(u,'fly'll,-fl)}vll? " is a

m=i+1(m #i + 1 is similar),i. e. ,u is a
fault-free vertex in Q¢ (d),v!“"" is a fault-free
vertex in Q"' (d). The cycle Cgiy...; can be represen-
ted as (u; sv; s Porge; L v; stt; )su;) where e lies on the
pa‘[h Polz---,‘[’vz vui]-

Since f;.; <<k — 2, by induction hypothesis,
there are even cycles with lengths from 4 to d* —
2f;:1in Q' (d) that each cycle contains the edge
(Y, 0l Let C,I+1 = (7Y, Y P
L7702 1,07 ) be an even I,.,-cycle con-
taining the edge («}“"V,0/“"") in Q,"' (d) where
4<l, ., <<d" = 2f,.,. Merging the two cycles C ...,
and C, |

as well as the two edges (u,,u!“"") and

jG+ 1)
(U;yvglJr )

,we can construct a fault-free even cycle
jG+1)

Cvis Pors Cois wy Jo wps w7V,
P, [w 0,0l ], 01" o) which contains e.

()bViOuSly,Z(Cgl‘..,-(,url)) :l(POI“'i I:'Z)l- 914,-]) + Z(Pl'+1
[P 02" P ) + 2 where (P [v,su; 1) =G +

C01~--i(i+1)

DXd* =2 f. =1.and [Py [l 0190 ]) =
a=0

1,3, ===y d* = 2f,,1 — 1. Therefore, the cycle

Corrii iy is of length from (i +1) X d* —23) f, +2
a=0

it1
to (i +2)Xd* —22 f, and contains the edge e.

a=0

Case 2: ¢ ¢ E(Q) (dHUEWQ}(d»U--UE
(QI ' (d))vice. su€QLAYUE{0,1,vyd —1}),
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QY (d)(m&«{0,1,-+.d —1}).,lFm.e is an edge
of dimension j and v = «’“’ (j € {1,2, -,k + 1},
a€{0,1,--,d —1}).

We assume that u € Q) (d) and v € Q; (d) (If
udQ)(d) or v Q; (d) is similar). Since f,<<(k +
1) —2=F% —1,there is an integer : (i € {1,2,++,k +
1}),i#; ssuch that «’“ and v'“’ (a €{0,1,++,d —

1}) are fault-free. Thus, Cusu'“ , 0"

svusu) 1s a
fault-free 4-cycle containing the edge e. Noting that
w and u'“’ (respectively,v and v'“’) are adjacent in
Q) (d) (respectively,Q; (d)). Since f,<<k — 2 and
f1<<k — 2,by induction hypothesis, there is an even
lo-cycle in QY (d) containing the edge Cu, u'™’)
such as C,0 =(usu"  Py[u" sulsu) and there is
an even /;-cycle in Q, (d) containing the edge (v,
v such as C; = (0" v, Py [v, 0" ], 0")
where 41, <<d" = 2f, and 4/, <<d" - 2f,. Com-

bining the 4-cycle Cu,u'™ 0"

,v,u) and a 4-cycle
containing (u,u’) in Q) (d),the desired 6-cycle
can be obtained. Merging the two cycles C,, and C,

i@ il
nO "), we

as well as the two edges (u,v) and (u
can construct a fault-free even cycle Cy; = (v, P,
(v, ], 0™, u™,Polu™ sulsu) which con-
tains e. Obviously,/ (Cy) =1 (P, [v,0"“ D + (P,
[« yu]) +2 where I(Py[u" su])=3,5,,d" —
2fo—1and I[(P,[v,0v" ) =3,5,-,d*—2f, — 1.
This implies that 8 (Cy)<2Xd* =2(fo+ f1)»
L(Cy) is even and C, contains the edge e.

Let Cypp; (i =1,2,++,d —2) be a fault-free e-

ven ((i +1) Xd" -2 zilufa)-cycle containing the
edge e. Similar to Case 1, we can construct a fault-
free even cycle Copoiiiony = CUis Popes L0is t; sty s
W VP [l 0l L, 019" (9w ) which con-
tains e. The cycle Cy..;;+1, is of length from
G+1xd" =28 f, 4210 ((+2)xd" =23 f, and
contains the edge e.

Since | F|<{n — 2 and the degree of any vertex
of Q, (d) is n (d — 1), any fault-free vertex of
Q, (d) has at least n (d — 2) + 2 fault-free neigh-
bors. Thus, every fault-free vertex can be incident

by a fault-free edge. Therefore,we have

Corollary 3 Let =3 be an integer. For any
subset F of V(Q,(d))(d=2,d is an even number)
with | F|<<n —2,every vertex of Q,(d) — F lies on
a fault-free cycle of every even length from 4 to
d"—2|F]|.

Applying Theorem 3. If d =2, we have

4™ Assuming that n ==3. For any

Corollary
subset F of V(Q, (d)) with |F| =f,<n —2,cvery
edge of Q, (d) — F lies on a cycle of every even
length from 4 to 2" —2f,.

Applying Corollary 4. We have

Corollary 5%
subset F of V(Q, (d)) with |F|<na

tex of Q, — F lies on a fault-free cycle of every even

length from 4 to 2" - 2| F]|.

Let n==3 be an integer. For any

— 2,every ver-

3 d is an odd number

Theorem 4 Let x and y be any two vertices in
Q,(d)(n=2) and [ be any integer with D(Q, (d);
T,y)<U<d"—1.1f d is an odd number,! — D(Q,
(d)s;x,y) is an even number, then there is an xy-
path of length / in Q, (d). Moreover,if D(Q, (d);
x,y) =1,there is an xy-path of length /=d" =1 in
Q,(d).

Proof Let D(Q,(d);x,y) =m. The proof is
based on the recursive structure of Q, (d) by induc-
tion on n=>2.

When n=2,if D(Q,(d);x,y) =1. By the ver-
tex-transitivity of Q, (d)" ,without loss of general-
ity ,we can assume x =00,y =01.

x=00—>01=y,x=00—>02—>03—>01=y,x =
00—02—>03—>04—>05—>01=y .-+, x = 00—>02—>03—
04—>05—>+-—>0(d —3)>0(d —2)—>01 =y are the
xy-path of length [ =1,3,5,*,d =2 in Q,(d).

x =00—>10—>12—>02—>03—>04—>05—>+--—>0(d —
3H>0(d -2)>01=y,x =00>10—>20—>22—>12—
02—>03—>04—>05—>+-—>0(d —3)—>0(d —2)—>01=
y e,

x =00—>10—>20—>30—>40—>+--—>(d —2)0—>(d —
DO0—>(d -1)2>(d —2)2—>++-—>22—>12—>02—>03—
13—>23—=>+—>(d —2)3—=>(d —~1)3—>(d —14—({d —
2)4—>+-—>24—>14—>04—>+--—>0(d —4)—>1(d —4)—>2
d-4)—>—>d-2)d-41—>d-1d-4—



d-Dd-3)>d-2)(d—-3)>—>2(d -3)—>1
(d-3)>0(d -3)>0(d —2)—>1(d —2)—>2(d —
2)=>—>(d-2)d-2)>d-1Dd-2)>{d -1
1>(d = 2)1—>++—>21>11>01 = y . +--.

x =00—>10—>20—>30—>40—>+—>(d —2)0—>(d —
DO0—>d -1)2—>(d —2)2—>+-—>22—>12—>02—>03—>
13—=>23—>+—>(d =2)3—>(d —1)3—=>(d - 1)4—>{d -
2)4—>-—>24—>14—>04—>+-—>0(d —4)—>1(d —4)—>
2d—4)—>—>d-2)d-4)—>d-1){d —4)—>
d-1Dd-3)>d-2)d—-3)>—>2(d -3)—>
1(d —3)>0(d —3)—>0(d —2)—>1(d —2)—>2(d —
2)=>e=>(d-2)d-2)>d-1)d-2)>{d -1
1>d-1Dd-1)>d-2)d-1)—>d-2)1—>
d-3D1=>d-3)d-1)—=>d -4 d-1)—>d -
4)1—>-—>21>2(d —1)—=>1(d —1)—=>11=>01 =y are
the xy - path of length [ = d.d + 2, -, d* —
d—1,,d*—21in Q,(d).

x =00—>10—>20—>30—>40—>+-—>(d —2)0—>(d -
DO0—>(d -12—>(d —2)2—>+-—>22—>12—>02—>03—>
13—>23—>+—>(d —=2)3—>(d —1)3—>(d - 1)4—>(d —
2)4—>++>24—>14—>04—>+-—>0(d —4)—>1(d —4)—>
2d—4)—>—>(d-2)d-4)—>d-1)(d-4)—>
d-Dd-3)>d-2)(d—-3)=>—>2(d —3)—>1
(d—-3)>0(d -3)>0(d —2)—>1(d —2)—>2(d —
2)=>>(d-2)d-2)>d-1){d —-2)—>{d -
DI>d-Dd-1D—>d-2)d-1)>(d-2)1—>
d-3PD1=>d-3Hd-1—~>d-4d-1)—~>d -
4H1—>-—>21>2(d - 1)—>0(d —1)—>1(d - 1)—~>11—>
01 =y is the zy-path of length {=d* -1 in Q,(d).

The rest of the inductive proof are similar to
Theorem 1.

Applying Theorem 4,we have

Corollary 6 For any n =2, every edge of
Q,(d)(d=3.d is an odd number) lies on a cycle of
every even length from 4 to d" — 1. Moreover, every
edge of Q,(d) lies on a cycle of length d".

Similar to Lemma 3. We have

Lemma 5 For any subset F of V(Q,(d))(d=
3.d is an odd number) with | F|<{1,every edge of
Q,(d) — F lies on a fault-free £-cycle,k = 4,6, -,
d®—2|F| — 1. Moreover, every edge of Q,(d) — F
lies on a fault-free (d® — 2| F|)-cycle.

Similar to Lemma 4, applying Theorem 4 and
Lemma 5. We have

Lemma 6 For any subset F of V(Q;(d))(d=
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3.d is an odd number) with | F|<{1,every edge of
Q;(d) — F lies on a fault-free k-cycle,k = 4,6, -,
d®—2|F| — 1. Moreover, every edge of Q,(d) — F
lies on a fault-free (d® — 2| F|)-cycle.

Similar to Lemma 6,we have

Theorem 5 Let n—=>3 be an integer and Q, (d)
(d=3,d is an odd number) has exactly one faulty
vertex. Then,every fault-free edge of Q, (d) lies on
a fault-free cycle of every even length from 4 to
d" — 3. Moreover,every fault-free edge of Q, (d) lies
on a fault-free cycle of length d" — 2.

Theorem 6 Let n =3 be an integer. For any
subset F of V(Q, (d))(d=3,d is an odd number)
with |F| = f,<<n —2,every edge of Q,(d) — F lies
on a cycle of every even length from 4 tod" —2f, —
1. Moreover,every edge of Q,(d) — F lies on a cycle
of length d" = 2f,.

Proof We prove this theorem by induction on
n.By Lemma 6, Theorem 6 holds for n = 3. Assum-
ing that the theorem is true for every integer %k (3<<
E<<n).Let F be a subset of V(Q,.,(d)) and |F| =
f.. By Corollary 6 and Theorem 5, Theorem 6 holds
for f,<<1. Thus, we only consider the case of 2<C
f.<n—2.

Let w and 2z be two distinct faulty vertices. By
Lemma 1,Q,.,(d) can be partitioned along dimen-
sion j (j €{1,2,+-,k +1}) into d copies Q, (d) ,de-
noted by Q; (d) (i =0,1,,d 1), w€Q}(d),z €
Qi (d)U,m€{0,1,2,+-,d—1},l#m). Let f, =
IFOVQud)|i =0,1,2,d = 1si.e.s f, =
fg;f, Therefore, f,<<k —2,i =0,1,2,++,d — 1. Let
e=(u,v) be a fault-free edge of Q,., (d) — F. In
order to prove this theorem,we establish every even
[-cycle containing e where 4<<I<<d"™' —2f, — 1,
and a (d""' = 2f,)-cycle containing e.

Case 1: e € E(Q, (d)H UEQ,(d» U U
EQ{ ' (d))si.e. se lieson Qi(d)(GE€{0,1,2,+,
d —1}). We only consider that e € E(Q} (d)) (e &
E(Q}(d)) is similar).

Since f,<<k — 2,by induction hypothesis, there
is a fault-free even [,-cycle in Q) (d) containing the

edge ¢ where 4/, <{d" — 2, — 1,and there exists a
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fault-free (d*
edge e. Thus, the cycle of every even length from 4
tod* —2f, -
be found in Q% (d). Let Czo* (ng

- 2f¢)-cycle in Q) (d) containing the

1 containing the edge ¢ in Q,.;(d) can

) be a fault-free e-
ven [ -cycle (/; -cycle) containing the edge ¢ in Q'
(d) where I, =d" =2f, =1, =d" =2f,). One

1
can observe that there are at least o X (d"-1) -

fo — 1 disjoint edges such that each of them differs
C,..). Since k=3 and

0

with e in the cycle C,. (
0
E+1 1 E+1
> i<k —1,*>< (d* —1) - fy, —1> 2 f,. There-
i=0 i=1
fore,Clx (C,.0) has an edge (uy,vy) s Cugysvy) Fe,
0 0

)™ is a fault-free vertex in Q) (d) v

free vertex in Q) (d) (m € {1,2,+,d —1),h (uy,
wh)™)=1,h Cogsvy™ ) =1. We may assume that
J(D

m=1 (m #1 is similar),i. e. , u}

is a fault-

is a fault-free

vertex in Q; (d), v

(d). The cycle C,. (C,.

is a fault-free vertex in Q!

©) can be represented as

CuysvgsPylvgsuy Jsuy) where e lies on the path P,
I:'UQ 9u0:|.
Since f; <k

are even cycles with lengths from 4 to d* = 2f, — 1

— 2, by induction hypothesis, there

in Q; (d) that each cycle contains the edge (u3'",

v]m)

,and there is a cycle of length d* —2f, in Q,
(d) that the cycle contains the edge (u}™" o) ).

Let C, = = (P ulV L P [wd® soiP ], v ) be an e-
ven /,-cycle containing the edge (u}" ,v)") in Q;

(d) where 4<<l,<<d" —2f, - 1,C, = (oI ViV,

P [uj(l) (l):| 0 (1)) be a (dk
ning the edge (u)V,v{"”) in Q, (d). Merging the
and C,

2f1)-cycle contai-

two cycles C,. as well as the two edges

0

Cugsub™) and (vy 03", we can construct a fault-

free even cycle Co = (vgs Py Lvgs ug |y ugs ud’ s
Pilul” v
ously,/ (Cy) =1 (PyLvysuy D) + 1L (P, [u)?,
0P D +2 where [(Py[vysus ) =d" —2f, —2,and
(P LudV sob” D =1,3,+,d" = 2f, — 1. There-
fore, the cycle Cy, is of length from d* —2f, +1 to 2
Xd" =2(f,+ f1) —2 and contains the edge e. Mer-
o and Clr1

iV, 9iY  vw,) which contains e. Obvi-

ging the two cycles C, as well as the two

edges (uy,ul™) and (vy,v)" ), we can construct a

fault-free even cycle Cyy = Cug s PoLlvgsug sugsud™ s

Pylup™ v
ously, (Cm) =71 (P, [vesus D + (P, [u)?,
vy P ) +2 where [ (Py[vysueg ) =d" —2f,—1 and [
(P, Lub sV D =d* =2f, = 1. Therefore, the cy-
cle Cyy is (2Xd" = 2(f, + f1))-cycle and contains
the edge e.

Let Cgp,..; (0 = 1,3,

IV, i vy which contains e. Obvi-

.d —4,d —2) be a fault-

free even ((i +1) X d* =2 ZI: f.)-cycle containing
a=0

the edge e. One can observe that there are at least

1
?X(i +1d*

each of them differs with e in the cycle Cgs......

- 2 f. — 1 disjoint edges such that
a=0
Since

k+1 1 i
k=3 and X f, <k -1, X G+Dd" = X[, 1>

a=0 a=0

k+1

> f..Therefore,Cgp...,

a=i+1

v ) & {es(uyavy) e

free vertex in Q) (d),v!"™ is a fault-free vertex in
PAYmE i+ 1+ 2, ad = 1) vh (u,yyul ™) =

1,hCv,,v!) =1. We may assume that m =7 + 1

has an edge (u;,v;),(u;,

JjGm)

’(ui—177}i—1)}7u1’ isafault-

JGm)

160D g a fault-free ver-

(m#i+1is similar) ,i.e. ,u’
tex in QL' (d) .0l " is a fault-free vertex in Q}™'
(d). The cycle Cgs....;
Pogey Lvis w; Js u; )
Poil v su; .
Since f;.; <k
there are even cycles with lengths from 4 to d* —
2f;1— 1 in Q"' (d) that each cycle contains the
edge (u!“"" ,01 V), and there is a (d* = 2f,. 1 )-
cycle in Q"' (d) that the cycle contains the edge

— j(i+1) jGi+1)
Let C, = (oY, W,

i+l ! !

can be represented as (u; ,v; ,

where e lies on the

— 2, by induction hypothesis,

jG+D
(ui ’

]:(i*’l))
Pi+1[u_):(f+l)’
containing the edge («/“"",2/“"") in Q)" (d)
where 4 << 1,,, <d" - 2f,., — 1, C, = jarn

1+1
JG+1D G+
us; 9P,‘+1 [u s U

j(i+1) j(i+1)
v ], vl Y)Y be an even ;. -cycle

21"y be a (db -

2f:.1u)-cycle containing the edge («}“"" ,2!“"") in

[(i+l> :I

Q. ' (d). Merging the two cycles Cgyy...; and C, | as

i+

well as the two edges (u; . u!" ") and (v, v/ "),

we can construct a fault-free even cycle Co..;;+1) =

G+ G+ G+
<UivP01~--i["Uivui]9uivu?l 9Pi+1[ufl »ot! ]v



jGi+1) : :
v}, v, ) which contains e.

i

L(Copuiien) =L Py Logsu, D+ L(P o La7
0l 1+ 2 where L (P[00, D = G+ 1) Xd" =2

Obviously,

S .- 1eand L(P [0, 010 ]) = 1,3, -,
a=0
d" = 2f,., — 2. Therefore, the cycle Cypoio1y is of

length from G +1) X d* =23 f, +2 to (i +2) X
a=0

d" =22 f, =1 and contains the edge ¢. Merging the
a=0

two cycles Cpp,...; and C,  as well as the two edges

it+1

N o

Cu; s ul"P) and (v,, 9! "), we can construct a

fault-free even cycle Coroiivny = Co; s Porei Lo st s
jGi+1) j(i+1) j(i+1) jGi+1) .

w;sul 7Pi+l|:u?l » ol ]7'0?1 »v;) which

contains e. Obviously,

Z<C;)1-~-i(i+l)) =1 (POI---i [Ui ’ ui:l) + (Pi+1 [uf:(iﬂ) ’

oY) + 2 where I(P gy [v,su, D =G +1) Xd" -
23 fo =1 and ( (P, [V, 00 ]) = g* -
a=0

2f;.1—1. Therefore, the cycle Coriier, 1S

(G+2)yxd" - 2 ZL: f.) -cycle and contains the
a=0

edge e.

Let Cyp..; (i =2.4,++.d —5,d —3) be a fault-

free even ((7 +1) Xd* -2 Zi:ofa — 1) -cycle contai-
ning the edge ¢, Cgp...; be a fault-free ((i + 1) X

d" =2 2 f.)-cycle containing the edge e. One can
a=0
1
observe that there are at least 5 X[G+Dd*-1]-

Zl:fu — 1 disjoint edges such that each of them dif-
a=0

fers with e in the cycle Cgy,...;. Since # =3 and

k+1 1 i
fotéle—l,?X[(i +1)d*-11- 2 f, —i>
a=0 a=0

Bt ,

> f.. Therefore,Cgy...; (Cops....) has an edge (u, »
a=i+1
v;),(u;,vi)eé{e,(ul7'01)""7(u,-71,'U,'fl)},uf:(m) is

a fault-free vertex in Q) (d) , v’ is a fault-free ver-
texinQy(d)(me{i+1,i+2,,d—-1}),h(u,;,
W) =1,h(v,, 0" ) =1. We may assume that
m=i+1 (m#i+1is similar)si. e.,u!“" is a
fault-free vertex in Q™' (d) v " is a fault-free

vertex in Q.1 (d). The cycle Cgpy.oni (Cipp.ni) can be

represented as Cu; sv; s Porg; Lv; s 1; Jsu;) where e

ERE. AT RBEN d BEH 0 EHHE BN

lies on the Py [v; su; ).

Since f;.; <<k — 2, by induction hypothesis,
there are even cycles with lengths from 4 to d* —
2fic1 — 1 in Q' (d) that each cycle contains the
edge (u!“"" ,01“ V), and there is a (d* = 2f;. 1)~
cycle in Q"' (d) that the cycle contains the edge
)"V 0l Let C, . = (1" w9V P
w70 09" P ,07%"Y) be an even [,.,-cycle con-
taining the edge (/""" ,2/“"") in Q)" (d) where
4<li+l <d* - 2f — 1. C,;ﬂ _ (v{:(i-*-l) , u{(;ﬂ) ,
Pi+1[ué‘(i+1) ,v{“(,‘ﬂ)]’v{_‘uﬂ)) be a (d* — 2f . 1)-cy-
cle containing the edge («/“ 7", ") in Q)" (d).
Merging the two cycles Cg,...; and C, as well as
the two edges (u; su!“"") and (v, ,v!“""

,we can
construct a fault-free even cycle Cyriio1y = (vss
Py,..; |:"Ui s U; ]7 U;» u{(iﬂ) » Py [u{(iﬂ) ’ U{:(HU :lv
oY, w, ) which Obviously,

L(Coroiivn) =L P Logsu, D+ LCP Ly [a70
z){:(“l)]"‘Z Wherel(Poynz["Ui’ui:I):<i+1)xdk_2

contains e.

S o= 2vand 1P, [wl0, /90 ]) = 1,3, -,
a=0
d" = 2f,., — 2. Therefore, the cycle Cyroio1y is of

length from (i + 1) Xd* =23 f, +1 to (i +2)X

a=0
i+1

d" =22 f, =2 and contains the edge e¢. Merging the
a=0

two cycles Cp....; and C, as well as the two edges

i+l

j(i+1) j(i+1)
(u; » ") and (v, 0" "), we can construct a
fault-free even cycle Coroiivny = (v s Pori Lvisu; s
u, ,uf“”) .P,., [u?uﬂ) ,’Z)'Z»<I+l>:|,'l}? i+t ,v,) which

contains e. Obviouslys { (Cyriciiny) = L (Popi [ 05 s
w, D+ LP, [l 20" ) + 2 where [ (P,

fosvu, D =G+ 1) Xdb - zaiofa ~1 and L (P,.,
w01 ) =d* = 2f,,, — 1. Therefore, the
cycle Copoiiiany is (G +2) X d* — 2;2:]‘“ )-cycle and
contains the edge e.

Case 2: e ¢ E(Q, (d) UE(Q, (d)» U U
EQ: "d)vie. .u€Qu(d)(LE{0, 1,1 d -
1),0€Q; d)m€E{0,1,-,d—1}).[Fm,e is an
edge of dimension j and v =1’ (€ {1,2,,k +
1},a€{0,1,+,d —1}).

The proof of Case 2 is similar to the proof of
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Case 2 of Theorem 3.
Applying Theorem 6,we have
Corollary 7 Let n =3 be an integer. For any
subset F of V(Q, (d))(d=3,d is an odd number)
with | F|<<n — 2,every vertex of Q,(d) — F lies on
a fault-free cycle of every even length from 4 to
d" = 2| F|. Moreover, every vertex of Q, (d) — F

lies on a fault-free cycle of length d" —2|F|.
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