♦特邀专稿♦

Cycles Embedding in d - Ary n - Dimensional Cube With Node Failures *

LI Zhaoxiang

(College of Science, Minzu University of China, Beijing, 100081, China)

Abstract: The *d*-ary *n*-dimensional cube (the general form of hypercube) has been widely used as the interconnection network in parallel computers. The fault-tolerant capacity of an interconnection network is a critical issue in parallel computing. In this article, we consider the fault-tolerant capacity of the *d*-ary *n*-dimensional cube. Let *F* be a set of faulty vertices in $Q_n(d)$ ($n \ge 3$) with $|F| \le n-2$, we prove that every fault-free edge and fault-free vertex (node) of $Q_n(d)$ lies on a fault-free cycle of every even length from 4 to $d^n - 2|F|$. Moreover, if *d* is an odd number, every fault-free edge and fault-free vertex (node) of $Q_n(d)$ lies on a fault-free cycle of length $d^n - 2|F|$.

Key words: cycle embedding, hypercube, fault-tolerant, interconnection network, d-ary

中图分类号:O157.5 文献标识码:A 文章编号:1005-9164(2021)04-0341-12 DOI:10.13656/j.cnki.gxkx.20211109.002

0 Introduction

Network topology is usually represented by a graph where vertices represent processor and edges represent links between processors^[1]. The hypercube has been widely used as the interconnection network in parallel computers^[2,3]. The *n*-dimensional generalized hypercube, denoted by $Q(d_1, d_2, \dots, d_n)$, where $d_i (\geq 2)$ is an integer for each i = 1, $2, \dots, n$. The vertex-set of $Q(d_1, d_2, \dots, d_n)$ is the set $V = \{x_1 x_2 \cdots x_n : x_i \in \{0, 1, \cdots, d_i - 1\}, i = 1, 2, \cdots, n\}$ and two vertices $x = x_1 x_2 \cdots x_n$ and $y = y_1 y_2 \cdots y_n$ are linked by an edge if and only if they differ exactly in one coordinate. If $d_1 = d_2 = \cdots = d_n = d \ge 2$, then $Q(d, d, \cdots, d)$ is called the *d*-ary *n*-dimensional cube, denoted by $Q_n(d)$. It is clear that $Q_n(2)$ is hypercube Q_n . For two vertices *u* and *v* in $Q_n(d)$, the Hamming distance h(u, v) between two vertices *u* and *v* is the number of different bits in the corresponding strings of both vertices; and

LI Z X. Cycles Embedding in d-Ary n-Dimensional Cube With Node Failures [J]. Guangxi Sciences, 2021, 28(4); 341-352.

收稿日期:2021-04-15

^{*}国家自然科学基金项目(10771225)资助。

[【]作者简介】

李赵祥(1968-),男,博士,教授,主要从事图论及应用研究,E-mail:zhaoxiangli8@163.com。

[【]引用本文】

李赵祥. 有节点故障的 d 进制 n 维方的圈嵌入[J]. 广西科学, 2021, 28(4): 341-352.

the distance between u and v, denoted by $D(Q_n (d); u, v)$, is the length of the shortest path between u and v. Obviously, $h(u, v) = D(Q_n (d); u, v)$. Let $u = u_1 u_2 \cdots u_n$ be a vertex of $Q_n (d), u^{j(a)} = v = v_1 v_2 \cdots v_n$ is also a vertex of $Q_n (d), v_i = u_i$ ($1 \le i \le n, i \ne j, j \in \{1, 2, \cdots, n\}$), $v_j \ne u_j, v_j = a \in \{0, 1, 2, \cdots, d-1\}$. A vertex is fault-free if it is not faulty. An edge is fault-free if the two end-vertices and the link between them are not faulty. A cycle of length k is called k-cycle. A graph G is vertex-transitive if for any given pair (x, y) of vertices in G there is some $\theta \in \operatorname{Aut}(G)$ (Aut (G) is an automorphism group of G) such that $y = \theta(x)$.

The cycle embedding problem deals with all possible lengths of the cycles in a given graph, it is investigated in a lot of interconnection networks^[4]. The fault-tolerant capacity of an interconnection network is a critical issue in parallel computing^[2]. For hypercube Q_n , Saad and Schultz^[5] proved that an even cycle of length k exists for each even integer between 4 and 2^n . Let f_e (respectively, f_n) be the number of faulty edges (respectively, vertices) in Q_n . If $f_e \leq n-2$, Li et al. ^[1] proved that every faultfree edge of Q_n ($n \ge 3$) lies on a fault-free cycle of every even length from 4 to 2^n . If $f_e \leq n-1$ and all faulty edges are not incident with the same vertex, Xu et al. ^[6] showed that every fault-free edge of Q_n $(n \ge 4)$ lies on a fault-free cycle of every even length from 6 to 2^n . Fu^[7] proved that a fault-free cycle of length with at least $2^n - 2f_v$ can be embedded in Q_n with $f_v \leq 2n - 4$. If $f_v \leq 2n - 2$, Tsai^[2] proved that every fault-free edge and fault-free vertex of Q_n lies on a fault-free cycle of every even length from 4 to $2^n - 2f_n$. Stewart and Xiang^[8] studied the bipanconnectivity and bipancyclicity in k-ary n-cubes. Cheng et al. [9] studied the vertex-fault-tolerant cycles embedding in balanced hypercubes with faulty edges: Hao et al. [10] studied the hamiltonian cycle embedding for fault tolerance in balanced hypercubes.

In this article, we study the cycle embedding in $Q_n(d)$. For any subset F of $V(Q_n(d))(n \ge 3)$ with $|F| \le n-2$, we prove that every fault-free edge and fault-free vertex (node) of $Q_n(d)$ lies on a fault-free

cycle of every even length from 4 to $d^n - 2 |F|$. If d = 2, these results are the results of Tsai^[2].

1 Preliminaries

The *n*-bit Gray code is a ring sequence of n-bit numbers (the number of each coordinate is selected from $\{0, 1, 2, \dots, d-1\}$) such that any two successions sive numbers have one and only one different bit and so that all numbers having n bits are represented. The *n*-bit Gray code is denoted by G_n . If d is an even number. One starts with the sequence of the d1-bit numbers $0, 1, 2, \dots, d-1$. This is a 1-bit Gray code, *i*. *e*., $G_1 = \{0, 1, 2, \dots, d-1\}$. To obtain a 2-*bit* Gray code G_2 , take the same sequence and insert a zero in front of each number, then take the sequence in reverse order and insert a one in front of each number, take the same sequence and insert a 2 in front of each number, then take the sequence in reverse order and insert a 3 in front of each number, take the same sequence and insert a d-2 in front of each number, then take the sequence in reverse order and insert a d-1 in front of each number. In other words, from $G_1 = \{0, 1, 2, \dots, d - 1\}$, we get a 2-bit Gray code $G_2 = \{00, 01, \dots, 0(d-2), 0(d-1), \dots, 0(d-2), 0(d-2), 0(d-1), \dots, 0(d-2), 0(d-2), \dots, 0(d-2), 0(d-2), \dots, 0($ $1(d-1), 1(d-2), \dots, 11, 10, \dots, (d-2)0, (d-2)$ $1, \cdots, (d-2)(d-2), (d-2)(d-1), (d-1)(d-1)$ 1), (d-1)(d-2), ..., (d-1)1, (d-1)0}. More generally, denoted by G_n^R the sequence obtained from G_n by reversing its order, and by mG_n , m = 0, 1, 2,..., d = 1 (respectively, mG_n^R) the sequence obtained from G_n by inserting a *m* in front of each element of the sequence, then an (n + 1) - bit Gray code can be generated by the recursion $G_{n+1} = \{0G_n, \dots, 0\}$ $1G_n^R, 2G_n, 3G_n^R, \dots, (d-2)G_n, (d-1)G_n^R$. If d is an odd number, Gray codes can be similar to generate.

Let V_n be the set of vertices of $Q_n(d)$. For a given $i(0 \le i \le d-1)$, let iV_{n-1} be the subset of vertices of $Q_n(d)$ whose fist coordinate is i. Thus the set of vertices of $Q_n(d)$ can be decomposed into d disjoint subsets $0V_{n-1}, 1V_{n-1}, \dots, (d-1)V_{n-1}$. We use $iQ_{n-1}(d)$ to denote the subgraph of $Q_n(d)$ induced by iV_{n-1} . Then $iQ_{n-1}(d)$ is isomorphic to

 $Q_{n-1}(d)$. It is often convenient to write $Q_n(d) = 0Q_{n-1}(d)\Theta 1Q_{n-1}(d)\Theta \cdots \Theta(d-1)Q_{n-1}(d)$.

Lemma 1 Let u and v be two distinct vertices of $Q_n(d)$. Then, there is a partition which can partition $Q_n(d)$ into d copies $Q_{n-1}(d)$, denoted by Q_{n-1}^i $(d)(i || 0, 1, \dots, d-1)$ such that $u \in V(Q_{n-1}^m(d))$ and $v \in V(Q_{n-1}^k(d))(m, k \in \{0, 1, 2, \dots, d-1\},$ $m \neq k \}.$

Proof Let $u = u_1 u_2 \cdots u_n$ and $v = v_1 v_2 \cdots v_n$. Since u and v are distinct vertices, there is an index $j (j \in \{1, 2, \dots, n\}$ such that $u_j \neq v_j, u_j \in \{0, 1, \dots, d-1\}, v_j \in \{0, 1, \dots, d-1\}$. Therefore, $Q_n(d)$ can be partitioned along dimension j into d copies $Q_{n-1}(d)$ such that one contains u and the other contains v.

Lemma 2 Let e = (u, v) be an edge of Q_n (d). Then, there is a partition which can partition $Q_n(d)$ into d copies $Q_{n-1}(d)$, denoted by $Q_{n-1}^i(d)$ $(i = 0, 1, \dots, d-1)$ such that $u \in V(Q_{n-1}^m(d))$ and $v \in V(Q_{n-1}^m(d))$ $(m \in \{0, 1, 2, \dots, d-1\})$, *i. e.*, *e* is an edge of $Q_{n-1}^m(d)$.

Proof Let e = (u, v) be an edge of $Q_n(d)$, $u = u_1 u_2 \cdots u_n$, $v = v_1 v_2 \cdots v_n$, then, there is an index i $(i \in \{1, 2, \dots, n\})$ such that $u_i \neq v_i$, $u_j = v_j$ $(1 \leq j \leq n, j \neq i)$. Therefore, $Q_n(d)$ can be partitioned along dimension j into d copies $Q_{n-1}(d)$ such that $e \in E(Q_{n-1}^m(d))$ $(m \in \{0, 1, 2, \dots, d-1\})$.

2 *d* is an even number

Theorem 1 Let x and y be any two vertices in $Q_n(d)(n \ge 2)$ and l be any integer with $D(Q_n(d); x, y) \le l \le d^n - 1$. If d is an even number and $l - D(Q_n(d); x, y)$ is also an even number, then there is an xy-path of length l in $Q_n(d)$.

Proof Let $D(Q_n(d); x, y) = m$. The proof is based on the recursive structure of $Q_n(d)$ by induction on $n \ge 2$. When n = 2, if $D(Q_2(d); x, y) = 1$. By the vertex-transitivity of $Q_2(d)^{[3]}$, without loss of generality, we can assume x = 00, y = 01.

 $x = 00 \rightarrow 01 = y, x = 00 \rightarrow 02 \rightarrow 03 \rightarrow 01 = y, x = 00 \rightarrow 02 \rightarrow 03 \rightarrow 04 \rightarrow 05 \rightarrow 01 = y, \dots, x = 00 \rightarrow 02 \rightarrow 03 \rightarrow 04 \rightarrow 05 \rightarrow \dots \rightarrow 0(d-2) \rightarrow 0(d-1) \rightarrow 01 = y \text{ are the}$

xy-path of length $l = 1, 3, 5, \dots, d-1$ in $Q_2(d)$.

 $x = 00 \rightarrow 10 \rightarrow 12 \rightarrow 02 \rightarrow 03 \rightarrow 04 \rightarrow 05 \rightarrow \dots \rightarrow 0 (d - 2) \rightarrow 0 (d - 1) \rightarrow 01 = y. x = 00 \rightarrow 10 \rightarrow 20 \rightarrow 22 \rightarrow 12 \rightarrow 02 \rightarrow 03 \rightarrow 04 \rightarrow 05 \rightarrow \dots \rightarrow 0 (d - 2) \rightarrow 0 (d - 1) \rightarrow 01 = y. \dots x = 00 \rightarrow 10 \rightarrow 20 \rightarrow 30 \rightarrow 40 \rightarrow \dots \rightarrow (d - 2) 0 \rightarrow (d - 1) 0 \rightarrow (d - 1) 2 \rightarrow (d - 2) 2 \rightarrow \dots \rightarrow 22 \rightarrow 12 \rightarrow 02 \rightarrow 03 \rightarrow 04 \rightarrow 05 \rightarrow \dots \rightarrow 0 (d - 2) \rightarrow 0 (d - 1) \rightarrow 01 = y. \dots x = 00 \rightarrow 10 \rightarrow 20 \rightarrow 30 \rightarrow 40 \rightarrow \dots \rightarrow (d - 2) 0 \rightarrow (d - 1) 0 \rightarrow (d - 1) 2 \rightarrow (d - 2) 2 \rightarrow \dots \rightarrow 22 \rightarrow 12 \rightarrow 02 \rightarrow 03 \rightarrow 13 \rightarrow 23 \rightarrow \dots \rightarrow (d - 2) 3 \rightarrow (d - 1) 3 \rightarrow (d - 1) 4 \rightarrow (d - 2) 4 \rightarrow \dots \rightarrow (d - 2) (d - 1) \rightarrow (d - 1) 3 \rightarrow (d - 1) \rightarrow (d - 1)$

When n = 2, if $D(Q_2(d); x, y) = 2$. By the vertex-transitivity of $Q_2(d)^{[3]}$, without loss of generality, we can assume x = 00, y = 11.

 $x = 00 \rightarrow 10 \rightarrow 11 = y, x = 00 \rightarrow 20 \rightarrow 30 \rightarrow 10 \rightarrow 11 =$ y. x = 00 \rightarrow 20 \rightarrow 30 \rightarrow 40 \rightarrow 50 \rightarrow 10 \rightarrow 11 = y. x = 00 \rightarrow 20 \rightarrow 30 \rightarrow 40 \rightarrow 50 \rightarrow ... \rightarrow (d - 2) 0 \rightarrow (d - 1) 0 \rightarrow 10 \rightarrow 11 = y are the xy-path of length l = 2, 4, 6, ..., d in $Q_2(d)$.

 $x = 00 \rightarrow 01 \rightarrow 21 \rightarrow 20 \rightarrow 30 \rightarrow 40 \rightarrow 50 \rightarrow \cdots \rightarrow (d - 1)$ $2)0 \rightarrow (d-1)0 \rightarrow 10 \rightarrow 11 = y \cdot x = 00 \rightarrow 01 \rightarrow 02 \rightarrow 22 \rightarrow$ $21 \rightarrow 20 \rightarrow 30 \rightarrow 40 \rightarrow 50 \rightarrow \dots \rightarrow (d-2)0 \rightarrow (d-1)0 \rightarrow$ $10 \rightarrow 11 = v \dots x = 00 \rightarrow 01 \rightarrow 02 \rightarrow \dots \rightarrow 0 (d-2) \rightarrow 0$ $(d-1) \rightarrow 2(d-1) \rightarrow 2(d-2) \rightarrow \dots \rightarrow 22 \rightarrow 21 \rightarrow 20 \rightarrow$ $30 \rightarrow 40 \rightarrow \cdots (d-3)0 \rightarrow (d-2)0 \rightarrow (d-1)0 \rightarrow 10 \rightarrow$ $11 = y \dots x = 00 \rightarrow 01 \rightarrow 02 \rightarrow \dots \rightarrow 0(d-2) \rightarrow 0(d-2)$ $1) \rightarrow 2(d-1) \rightarrow 2(d-2) \rightarrow \dots \rightarrow 22 \rightarrow 21 \rightarrow 20 \rightarrow 30 \rightarrow$ $31 \rightarrow 32 \rightarrow \dots \rightarrow 3(d-2) \rightarrow 3(d-1) \rightarrow 4(d-1) \rightarrow$ $4(d-2) \rightarrow \cdots \rightarrow 42 \rightarrow 41 \rightarrow 40 \rightarrow \cdots \rightarrow (d-3)0 \rightarrow (d-3)$ $3)1 {\rightarrow} (d-3)2 {\rightarrow} \cdots {\rightarrow} (d-3)(d-2) {\rightarrow} (d-3)$ $(d-1) \rightarrow (d-2)(d-1) \rightarrow (d-2)(d-2) \rightarrow \dots \rightarrow$ $(d-2)2 \rightarrow (d-2)1 \rightarrow (d-2)0 \rightarrow (d-1)0 \rightarrow (d-2)0 \rightarrow ($ 1) \rightarrow 1(d - 1) \rightarrow 1(d - 2) \rightarrow ... \rightarrow 13 \rightarrow 12 \rightarrow 10 \rightarrow 11 = y are the xy-path of length $l = d + 2, d + 4, \dots, 3d$ – $2, \dots, d^2 - 2$ in $Q_2(d)$.

Assuming the theorem holds for any k with $2 \le k \le n$. Let $x = x_1 x_2 \cdots x_n$ and $y = y_1 y_2 \cdots y_n$ be any two vertices with distance m in $Q_n(d)$ and let l be

an integer with $m \leq l \leq d^n - 1$ and l - m is an even number. Let $Q_n(d) = 0Q_{n-1}(d) \Theta 1Q_{n-1}(d) \Theta \cdots$ $\Theta(d-1)Q_{n-1}(d)$.

Case 1 $m \le n$

By the vertex-transitivity of $Q_n(d)^{[3]}$, without loss of generality, we can assume $x, y \in V(0Q_{n-1}(d))$. By the induction hypothesis, there is an xypath of length l in $Q_n(d)$, where $m \leq l \leq d^{n-1} - 1$.

Assuming $d^{n-1} \leq l \leq 2 \times d^{n-1} - 1$. Let P_0 be the longest xy-path in $0Q_{n-1}(d)$, the length of P_0 is l_{P_0} and $l_{P_0} - m$ is an even number. We have $l_{P_0} =$ $d^{n-1} - 1$ if m is odd and $l_{P_0} = d^{n-1} - 2$ if m is even. Let $l_1 = l - l_{P_0} - 1$. Then l_1 is odd and less than d^{n-1} . Let uv be any edge in P_0 , and $u, v \in 0Q_{n-1}$ $(d), u \neq x, u \neq y, v \neq x, v \neq y$. Then $P_0 = P_{0_{xu}} +$ $uv + P_{0_{vy}}$. Let u' and v' be neighbors of u and v in $1Q_{n-1}(d)$. By the induction hypothesis, there is a u'v'-path P_1 of length l_1 in $1Q_{n-1}(d)$. Then $P_{0_{xu}} +$ $uu' + P_1 + v'v + P_{0_{vy}}$ is an xy-path of length l in $0Q_{n-1}(d)\Theta 1Q_{n-1}(d)$, this is also an xy-path of length l in $Q_n(d)$.

Assuming $2 \times d^{n-1} \leq l \leq 3 \times d^{n-1} - 1$. Let P_{01} be the longest xy-path in $0Q_{n-1}(d) \Theta 1Q_{n-1}(d)$, the length of P_{01} is $l_{P_{01}}$ and $l_{P_{01}} - m$ is an even number. We have $l_{P_{01}} = 2 \times d^{n-1} - 1$ if m is odd and $l_{P_{01}} = 2 \times d^{n-1} - 2$ if m is even. Let $l_2 = l - l_{P_{01}} - 1$. Then l_2 is odd and less than d^{n-1} . Let u_1v_1 be any edge in P_{01} , and $u_1, v_1 \in 1Q_{n-1}(d), u_1 \neq u', u_1 \neq v', v_1 \neq u', v_1 \neq v'$. Then $P_{01} = P_{01_{xu_1}} + u_1v_1 + P_{01_{v_1y}}$. Let u'_1 and v'_1 be neighbors of u_1 and v_1 in $2Q_{n-1}(d)$. By the induction hypothesis, there is an u'_1v_1' -path P_2 of length l_2 in $2Q_{n-1}(d)$. Then $P_{01_{xu_1}} + u_1u_1' + P_2 + v_1'v_1 + P_{01_{v_1y}}$ is an xy-path of length l in $0Q_{n-1}(d)$ $\Theta 1Q_{n-1}(d) \Theta 2Q_{n-1}(d)$, this is also an xy-path of length l in $Q_n(d)$.

...,..,...

Assuming $(d-1) \times d^{n-1} \leq l \leq d^n - 1$. Let $P_{01\cdots(d-2)}$ be the longest xy - path in $0Q_{n-1}(d)$ $\Theta 1Q_{n-1}(d) \Theta \cdots \Theta (d-2)Q_{n-1}(d)$, the length of $P_{01\cdots(d-2)}$ is $l_{P_{01\cdots(d-2)}}$ and $l_{P_{01\cdots(d-2)}} - m$ is an even number. We have $P_{01\cdots(d-2)} = (d-1) \times d^{n-1} - 1$ if m is odd and $P_{01\cdots(d-2)} = (d-1) \times d^{n-1} - 2$ if m is even. Let $l_{d-1} = l - l_{P_{01}\dots(d-2)} - 1$. Then l_{d-1} is odd and less than d^{n-1} . Let $u_{d-2}v_{d-2}$ be any edge in $P_{01\dots(d-2)}$, and u_{d-2} , $v_{d-2} \in (d-2)Q_{n-1}(d)$, $u_{d-2} \neq u'_{d-3}$, $u_{d-2} \neq v'_{d-3}$, $v_{d-2} \neq u'_{d-3}$, $v_{d-2} \neq v'_{d-3}$. Then $P_{01\dots(d-2)} = P_{01\dots(d-2)_{xu_{d-2}}} + u_{d-2}v_{d-2} + P_{01\dots(d-2)_{v_{d-2}y_{v_{d-2}y_{v_{d-2}y_{v_{d-2}}}}$. Let u'_{d-2} and v'_{d-2} be neighbors of u_{d-2} and v_{d-2} in $(d-1)Q_{n-1}(d)$. By the induction hypothesis, there is an $u'_{d-2}v'_{d-2}$ - path P_{d-1} of length l_{d-1} in $(d - 1)Q_{n-1}(d)$. Then $P_{01\dots(d-2)_{xu_{d-2}}} + u_{d-2}u'_{d-2} + P_{d-1} + v'_{d-2}v_{d-2} + P_{01\dots(d-2)_{xu_{d-2}}}$ is an xy-path of length l in $Q_n(d)$.

Case 2 m = n

By the vertex-transitivity of $Q_n(d)^{[3]}$, without loss of generality, we can assume $x \in V(0Q_{n-1}(d))$, $y \in V(1Q_{n-1}(d))$. Let v be a neighbor of y in $1Q_{n-1}(d)$, (d), u be the neighbor of v in $0Q_{n-1}(d)$. Then $D(Q_{n-1}(d); x, u) = n - 2$.

If $n \leq l \leq d^{n-1} + 1$. By the induction hypothesis, there is an *xu*-path *P* of length l - 2 in $0Q_{n-1}(d)$, Then P + uv + vy is an *xy*-path of length *l* in $Q_n(d)$.

If $d^{n-1} + 2 \le l \le 2 \times d^{n-1} - 1$. Let P_0 be the longest xu-path in $0Q_{n-1}(d)$, the length of P_0 is l_{P_0} and $l_{P_0} - m$ is an even number. We have $l_{P_0} = d^{n-1} - 1$ if m is odd and $l_{P_0} = d^{n-1} - 2$ if m is even. Let $l_1 = l - l_{P_0} - 1$. Then l_1 is odd and less than d^{n-1} . By the induction hypothesis, there is a vy-path P_1 of length l_1 in $1Q_{n-1}(d)$. Then $P_0 + uv + P_1$ is an xy-path of length l in $0Q_{n-1}(d)01Q_{n-1}(d)$, this is also an xy-path of length l in $Q_n(d)$.

If $2 \times d^{n-1} \le l \le 3 \times d^{n-1} - 1$. Let P_{01} be the longest xy-path in $0Q_{n-1}(d) \otimes 1Q_{n-1}(d)$, the length of P_{01} is $l_{P_{01}}$ and $l_{P_{01}} - m$ is an even number. We have $l_{P_{01}} = 2 \times d^{n-1} - 1$ if m is odd and $l_{P_{01}} = 2 \times d^{n-1} - 2$ if m is even. Let $l_2 = l - l_{P_{01}} - 1$. Then l_2 is odd and less than d^{n-1} . Let u_1v_1 be any edge in P_{01} , and u_1 , $v_1 \in 1Q_{n-1}(d)$, $u_1 \neq v$, $u_1 \neq y$, $v_1 \neq v$, $v_1 \neq y$. Then $P_{01} = P_{01_{xu_1}} + u_1v_1 + P_{01_{v_1y}}$. Let u'_1 and v'_1 be neighbors of u_1 and v_1 in $2Q_{n-1}(d)$. By the induction hypothesis, there is an $u'_1v'_1$ -path P_2 of length l_2 in $2Q_{n-1}(d)$. Then $P_{01_{xu_1}} + u_1u'_1 + P_2 + v'_1v_1 +$

345

 $P_{01_{v_1y}}$ is an xy-path of length l in $0Q_{n-1}(d)\Theta 1Q_{n-1}$ (d) $\Theta 2Q_{n-1}(d)$, this is also an xy-path of length l in $Q_n(d)$.

The rest of the proof is similar to Case 1.

By the induction principle, the theorem follows.

Applying Theorem 1, we have

Corollary 1 For any $n \ge 2$, every edge of $Q_n(d)(d \ge 2, d \text{ is an even number})$ lies on a cycle of every even length from 4 to d^n .

Applying Theorem 1. If d = 2, we have

Corollary 2^[1,3] Let x and y be any two vertices in Q_n ($n \ge 2$) and l be any integer with $D(Q_n; x, y) \le l \le 2^n - 1$. If $l - D(Q_n; x, y)$ is an even number, then there is an xy-path of length l in Q_n .

Let F be a set of faulty vertices in $Q_n(d)$.

Lemma 3 For any subset F of $V(Q_2(d))(d \ge 4, d)$ is an even number) with $|F| \le 1$, every edge of $Q_2(d) - F$ lies on a fault-free k-cycle, $k = 4, 6, \cdots, d^2 - 2|F|$.

Proof In this article, the operation is modulo d. By corollary 1, we only consider |F| = 1. Since $Q_2(d)$ is vertex-transitive^[3], without loss of generality, we may assume that the faulty vertex is w = 00. Let $e = (u, v) = (x_1^* x_2^*, x_1^* x_2^{**})$ be a fault-free edge of $Q_2(d)$. We may assume that $x_1^* \neq 0(x_1^* = 0$ is similar), $(x_1^* x_2^*, x_1^* (x_2^* + 1), \dots, x_1^* (x_2^* + 2i), x_1^* x_2^{**}, x_1^* x_2^{**})$ ($i = 1, 2, \dots, \frac{d-2}{2}$; If $x_2^* + j = x_2^{**}, j = 1, 2, \dots, 2i, x_2^* + j$ is replaced by $x_2^* + 2i + 1$ is a (2i + 2)-cycle and contains the edge e.

 $(x_{1}^{*} x_{2}^{*}, x_{1}^{*} (x_{2}^{*} + 1), \cdots, x_{1}^{*} (x_{2}^{*} + d - 2), x_{1}^{*}$ $(x_{2}^{*} + d - 1), \cdots, (x_{1}^{*} + k) (x_{2}^{*} + k \times (d - 1)),$ $(x_{1}^{*} + k) (x_{2}^{*} + k \times (d - 1) + 1), \cdots, (x_{1}^{*} + k) (x_{2}^{*} + k \times (d - 1) + 2i), (x_{1}^{*} + k) x_{2}^{*}, x_{1}^{*} x_{2}^{**}, x_{1}^{*} x_{2}^{*})$ $(k = 1, 2, \cdots, d - 2; i = 0, 1, \cdots, \frac{d - 2}{2}; \text{If } x_{1}^{*} + k = 0,$ $x_{1}^{*} + k \text{ is replaced by } x_{1}^{*} + k + 1. \text{ If } x_{2}^{**} =$ $(x_{2}^{*} + k \times (d - 1) + j) \mod d, j = 1, 2, \cdots, 2i, x_{2}^{*} + k \times (d - 1) + j$ $i \text{ is replaced by } x_{2}^{*} + k \times (d - 1) + i$

We may assume that $x_2^{**} \neq 0$ ($x_2^{**} = 0$ similar), ($x_1^* x_2^*$, $x_1^* (x_2^* + 1)$, ..., $x_1^* (x_2^* + d - 2)$, x_1^* ($x_2^* + d - 1$), ($x_1^* + 1$) ($x_2^* + d - 1$), ($x_1^* + 1$) ($x_2^* + d$), ..., ($x_1^* + 1$) ($x_2^* + 2 \times (d - 1)$), ..., ($x_1^* + d - 2$) ($x_2^* + (d - 2)(d - 1)$), ($x_1^* + d - 2$) ($x_2^* + (d - 2)(d - 1) + 1$), ..., ($x_1^* + d - 2$) ($x_2^* + (d - 1)(d - 1)$), $0(x_2^* + (d - 1)(d - 1))$, $0(x_2^* + (d - 1)(d - 1))$, $0(x_2^* + (d - 1)(d - 1) + 1$), ..., $0(x_2^* + (d - 1)(d - 1) + 2i)$, $0x_2^{**}$, $x_1^* x_2^{**}$, $x_1^* x_2^*$), ($i = 0, 1, ..., \frac{d - 2}{2}$; If $0 = (x_2^* + (d - 1) \times (d - 1) + j) \mod d$, j = 1, 2, ...,2i, $x_2^* + (d - 1) \times (d - 1) + j$ is replaced by $x_2^* + (d - 1) \times (d - 1) + 2i + 1$) is a ((d - 1) $\times d + 2i + 2$) and contains the edge e.

Lemma 4 For any subset F of $V(Q_3(d))(d \ge 2, d \text{ is an even number})$ with $|F| \le 1$, every edge of $Q_3(d) - F$ lies on a fault-free k-cycle, $k = 4, 6, \cdots, d^3 - 2|F|$.

Proof By Corollary 1, we only consider |F| =1. Since $Q_3(d)$ is vertex-transitive^[3], without loss of generality, we may assume that the faulty vertex is w = 000. Let e = (u, v) be a fault-free edge of Q_3 (d). By Lemma 2, $Q_3(d)$ can be partitioned into $dQ_2(d)$, denoted by $Q_2^i(d)$, $0 \leqslant i \leqslant d-1$; $e \in Q_{n-1}^m$ $(d)(m \in \{1, 2, \dots, d-1\})$. Without loss of generality, we may assume that $Q_3(d)$ is partitioned along dimension $j (j \in \{1, 2, 3\})$ into $dQ_2(d), e \in Q_2^1(d)$ (If $e \notin Q_2^1(d)$ is similar). By Corollary 1, there is a fault-free even k-cycle in $Q_2^1(d)$ containing the edge e where $4 \leq k \leq d^2$. Thus, the cycle of every even length from 4 to d^2 containing the edge *e* in $Q_3(d)$ can be found in $Q_2^1(d)$. Let C_1^* be a fault-free even d^2 -cycle containing the edge *e* in $Q_2^1(d)$. Because $d^2 \ge 4$, therefore, C_1^* has an edge (u_1, v_1) , (u_1, v_1) , (u_1, v_2) , (u_2, v_2) , (u_1, v_2) , (u_2, v_2) , (u_2, v_2) , (u_1, v_2) , (u_2, v_2) , (u_1, v_2) , (u_2, v_2) , (u_2, v_2) , (u_2, v_2) , (u_2, v_2) , (u_1, v_2) , (u_2, v_2) , v_1) $\neq e$, the cycle C_1^* can be represented as (u_1, v_1, v_1) $P_1[v_1, u_1], u_1$) where e lies on the path $P_1[v_1, v_1]$ u_1].

$$\begin{split} & u_1^{j(2)} \in Q_2^2\left(d\right), v_1^{j(2)} \in Q_2^2\left(d\right), h\left(u_1, v_1\right) = 1, \\ & h\left(u_1, u_1^{j(2)}\right) = 1, h\left(v_1, v_1^{j(2)}\right) = 1, h\left(u_1^{j(2)}, v_1^{j(2)}\right) = 1. \\ & \text{By Corollary 1, there are even cycles with lengths} \\ & \text{from 4 to } d^2 \text{ inclusive in } Q_2^2(d) \text{ that each cycle contains the edge } (u_1^{j(2)}, v_1^{j(2)}). \text{ Let } C_{l_2} = (v_1^{j(2)}, u_1^{j(2)}, \\ & u_1^{j(2)}, u_1^{j(2)}). \end{split}$$

$$\begin{split} &P_2 \big[u_1^{j(2)}, v_1^{j(2)} \big], v_1^{j(2)} \big) \text{ be an even } l_2 \text{-cycle containing} \\ &\text{the edge } (u_1^{j(2)}, v_1^{j(2)}) \text{ in } Q_2^2(d) \text{ where } 4 \leqslant l_2 \leqslant d^2. \\ &\text{Merging the two cycles } C_1^* \text{ and } C_{l_2} \text{ as well as the} \\ &\text{two edge } (u_1, u_1^{j(2)}) \text{ and } (v_1, v_1^{j(2)}), \text{ we can construct a fault-free even cycle } C_{12} = (v_1, P_1 \big[v_1, u_1 \big], \\ &u_1, u_1^{j(2)}, P_2 \big[u_1^{j(2)}, v_1^{j(2)} \big], v_1^{j(2)}, v_1 \big) \text{ which contains} \\ &e. \text{ Obviously, } l(C_{12}) = l(P_1 \big[v_1, u_1 \big]) + l(P_2 \big[u_1^{j(2)}, \\ v_1^{j(2)} \big]) + 2 \text{ where } l(P_1 \big[v_1, u_1 \big]) = d^2 - 1 \text{ and } l(P_2 \big[u_1^{j(2)}, v_1^{j(2)} \big]) = 1, 3, \cdots, d^2 - 1. \text{ Therefore, } C_{12} \text{ is an} \\ &even cycle of length from } d^2 + 2 \text{ to } 2d^2 \text{ and contains} \\ &\text{the edge } e. \end{split}$$

Let $C_{12\cdots i}^*$ $(i = 2, 3, \cdots, d - 2)$ be a fault-free even $i \times d^2$ -cycle containing the edge e. $C_{12\dots i}^*$ has an edge $(u_i, v_i), (u_i, v_i) \notin \{e, (u_1, v_1), \cdots, (u_{i-1}, v_{i-1})\},\$ the cycle $C_{12\cdots i}^*$ can be represented as $(u_i, v_i, P_{12\cdots i})$ $[v_i, u_i], u_i$) where e lies on the path $P_{12\dots i}[v_i, u_i]$. $u_i^{j(i+1)} \in Q_2^{i+1}(d), v_i^{j(i+1)} \in Q_2^{i+1}(d), h(u_i, v_i) = 1,$ $h(u_i, u_i^{j(i+1)}) = 1, h(v_i, v_i^{j(i+1)}) = 1, h(u_i^{j(i+1)}),$ $v_i^{j(i+1)}$) = 1. By Corollary 1, there are even cycles with lengths from 4 to d^2 inclusive in $Q_2^{i+1}(d)$ that each cycle contains the edge $(u_i^{j(i+1)}, v_i^{j(i+1)})$. Let $C_{l_{i+1}} = (v_i^{j(i+1)}, u_i^{j(i+1)}, P_{i+1}[u_i^{j(i+1)}, v_i^{j(i+1)}], v_i^{j(i+1)})$ be an even l_{i+1} -cycle containing the edge $(u_i^{j(i+1)})$, $v_i^{j(i+1)}$) in $Q_2^{i+1}(d)$ where $4 \leq l_{i+1} \leq d^2$. Merging the two cycles $C_{12\cdots i}^*$ and $C_{l_{i+1}}$ as well as the two edge $(u_i, u_i^{J(i+1)})$ and $(v_i, v_i^{J(i+1)})$, we can construct a fault-free even cycle $C_{12\cdots(i+1)} = (v_i, P_{12\cdots i} [v_i, u_i])$, $u_i, u_i^{j(i+1)}, P_{i+1}[u_i^{j(i+1)}, v_i^{j(i+1)}], v_i^{j(i+1)}, v_i)$ which contains e. Obviously, $l(C_{12\cdots(i+1)}) = l(P_{12\cdots i} [v_i,$ u_{i}]) + $l(P_{i+1}[u_{i}^{j(i+1)}, v_{i}^{j(i+1)}])$ + 2 where $l(P_{12\cdots i})$ $[v_i, u_i] = i \times d^2 - 1$ and $l(P_{i+1}[u_i^{j(i+1)}, v_i^{j(i+1)}]) =$ 1,3,..., d^2 - 1. Therefore, $C_{12\cdots(i+1)}$ is an even cycle of length from $i \times d^2 + 2$ to $(i + 1) \times d^2$ and contains the edge e.

Let $C_{12\cdots(d-1)}^*$ be a fault-free even $(d-1) \times d^2$ cycle containing the edge e. $C_{12\cdots(d-1)}^*$ has an edge $(u_{d-1}, v_{d-1}), (u_{d-1}, v_{d-1}) \notin \{e, (u_1, v_1), \cdots, (u_{d-2}, v_{d-2})\}$, the cycle $C_{12\cdots(d-1)}^*$ can be represented as $(u_{d-1}, v_{d-1}, P_{12\cdots(d-1)} [v_{d-1}, u_{d-1}], u_{d-1})$ where e lies on the path $P_{12\cdots(d-1)} [v_{d-1}, u_{d-1}]$. $u_{d-1}^{j(0)} \in Q_2^0(d) - F, v_{d-1}^{j(0)} \in Q_2^0(d) - F, h(u_{d-1}, v_{d-1}) = 1$, $h(u_{d-1}, u_{d-1}^{j(0)}) = 1, h(v_{d-1}, v_{d-1}^{j(0)}) = 1, h(u_{d-1}^{j(0)}, h)$ $v_{d-1}^{j(0)}$) = 1. By Lemma 3, there are even cycles with lengths from 4 to $d^2 - 2|F|$ inclusive in $Q_2^0(d) - F$ that each cycle contains the edge $(u_{d-1}^{j(0)}, v_{d-1}^{j(0)})$. Let $C_{l_0} = (v_{d-1}^{j(0)}, u_{d-1}^{j(0)}, P_0[u_{d-1}^{j(0)}, v_{d-1}^{j(0)}], v_{d-1}^{j(0)})$ be an even l_0 - cycle containing the edge ($u_{d-1}^{j(0)}$, $v_{d-1}^{j(0)}$) in $Q_2^0(d) - F$ where $4 \leq l_0 \leq d^2 - 2|F|$. Merging the two cycles $C_{12\dots(d-1)}^*$ and C_{l_0} as well as the two edge $(u_{d^{-1}}, u_{d^{-1}}^{J(0)})$ and $(v_{d^{-1}}, v_{d^{-1}}^{J(0)}),$ we can construct a fault-free even cycle $C_{12\cdots(d-1)0} = (v_{d-1}, P_{12\cdots(d-1)})$ $[v_{d-1}, u_{d-1}], u_{d-1}, u_{d-1}^{j(0)}, P_0[u_{d-1}^{j(0)}, v_{d-1}^{j(0)}], v_{d-1}^{j(d-1)},$ v_{d-1}) which contains e. Obviously, $l(C_{12\cdots(d-1)0}) = l$ $(P_{12\cdots(d-1)}[v_{d-1}, u_{d-1}]) + l(P_0[u_{d-1}^{j(0)}, v_{d-1}^{j(0)}]) + 2$ where $l(P_{12\dots(d-1)}[v_{d-1}, u_{d-1}]) = (d-1) \times d^2 - 1$ and $l(P_0[u_{d-1}^{j(0)}, v_{d-1}^{j(0)}]) = 1, 3, \cdots, d^2 - 1 - 2 |F|.$ Therefore, $C_{12\dots(d-1)0}$ is an even cycle of length from $(d-1) \times d^2 + 2$ to $d^3 - 2 | F |$ and contains the edge e.

Similar to Lemma 4, we have

Theorem 2 Let $n \ge 3$ be an integer and $Q_n(d)$ $(d \ge 2, d \text{ is an even number})$ has exactly one faulty vertex. Then, every fault-free edge of $Q_n(d)$ lies on a fault-free cycle of every even length from 4 to $d^n - 2$.

Theorem 3 Let $n \ge 3$ be an integer. For any subset F of $V(Q_n(d))(d \ge 2, d$ is an even number) with $|F| = f_v \le n-2$, every edge of $Q_n(d) - F$ lies on a cycle of every even length from 4 to $d^n - 2f_v$.

Proof We prove this theorem by induction on n. By Lemma 4, Theorem 3 holds for n = 3. Assuming that the theorem is true for every integer k ($3 \le k \le n$). Let F be a subset of $V(Q_{k+1}(d))$ and $|F| = f_v$. By Corollary 1 and Theorem 2, Theorem 3 holds for $f_v \le 1$. Thus, we only consider the case of $2 \le f_v \le n-2$.

Let w and z be two distinct faulty vertices. By Lemma 1, $Q_{k+1}(d)$ can be partitioned along dimension j ($j \in \{1, 2, \dots, k+1\}$ into d copies $Q_k(d)$, denoted by $Q_k^i(d)$ ($i = 0, 1, 2, \dots, d-1$), $w \in Q_k^l(d)$, $z \in Q_k^m(d)$ ($l, m \in \{0, 1, 2, \dots, d-1\}$, $l \neq m$). Let $f_i = |F \cap V(Q_k^i(d))|$. $i = 0, 1, 2, \dots, d-1, i.e.$, $f_v = \sum_{i=0}^{d-1} f_i$. Therefore, $f_i \leq k-2$, $i = 0, 1, 2, \dots, d-1$ 1. Let e = (u, v) be a fault-free edge of $Q_{k+1}(d) - F$. In order to prove this theorem, we establish every even *l*-cycle containing *e* where $4 \leq l \leq d^{k+1} - 2f_v$.

Case 1: $e \in E(Q_k^0(d)) \cup E(Q_k^1(d)) \cup \cdots \cup E$ $(Q_k^{d^{-1}}(d)), i. e., e$ lies on $Q_k^i(d)(i = 0, 1, 2, \cdots, d-1)$. We only consider that $e \in E(Q_k^0(d))(e \notin E(Q_k^0(d)))$ is similar).

Since $f_0 \leq k - 2$, by induction hypothesis, there is a fault-free even l_0 -cycle in $Q_k^0(d)$ containing the edge e where $4 \leq l_0 \leq d^k - 2f_0$. Thus, the cycle of every even length from 4 to $d^k - 2f_0$ containing the edge e in $Q_{k+1}(d)$ can be found in $Q_k^0(d)$. Let C_{l^*} be a fault-free even l_0^* -cycle containing the edge e in $Q_k^0(d)$ where $l_0^* = d^k - 2f_0$. One can observe that there are at least $\frac{1}{2} \times d^k - f_0 - 1$ disjoint edges such that each of them differs with e in the cycle C_{L^*} . Since $k \ge 3$ and $\sum_{i=0}^{k+1} f_i \le k - 1, \frac{1}{2} \times d^k - f_0 - 1 >$ $\sum_{i=1}^{k+1} f_i.$ Therefore, $C_{l_0^*}$ has an edge $(u_0, v_0),$ $(u_0, v_0) \neq e, u_0^{j(m)}$ is a fault-free vertex in $Q_k^m(d)$, $v_0^{j(m)}$ is a fault-free vertex in $Q_k^m(d)$ $(m \in \{1, 2, \cdots, n\}$ d-1, $h(u_0, u_0^{j(m)}) = 1, h(v_0, v_0^{j(m)}) = 1$. We may assume that m = 1 ($m \neq 1$ is similar), *i.e.*, $u_0^{j(1)}$ is a fault-free vertex in $Q_k^1(d)$, $v_0^{j(1)}$ is a fault-free vertex in $Q_k^1(d)$. The cycle C_{l^*} can be represented as $(u_0,$ v_0 , $P_0[v_0, u_0]$, u_0) where e lies on the path $P_0[v_0]$, u_0].

Since $f_1 \leq k - 2$, by induction hypothesis, there are even cycles with lengths from 4 to $d^k - 2f_1$ in $Q_k^1(d)$ that each cycle contains the edge $(u_0^{j(1)}, v_0^{j(1)})$, Let $C_{l_1} = (v_0^{j(1)}, u_0^{j(1)}, P_1[u_0^{j(1)}, v_0^{j(1)}], v_0^{j(1)})$ be an even l_1 -cycle containing the edge $(u_0^{j(1)}, v_0^{j(1)})$ in $Q_k^1(d)$ where $4 \leq l_1 \leq d^k - 2f_1$. Merging the two cycles $C_{l_0^*}$ and C_{l_1} as well as the two edges $(u_0, u_0^{j(1)})$ and $(v_0, v_0^{j(1)})$, we can construct a fault-free even cycle $C_{01} = (v_0, P_0[v_0, u_0], u_0, u_0^{j(1)}, P_1[u_0^{j(1)}, v_0^{j(1)}], v_0^{j(1)}], v_0)$ which contains e. Obviously, $l(C_{01}) = l(P_0[v_0, u_0]) + l(P_1[u_0^{j(1)}, v_0^{j(1)}]) + 2$ where $l(C_{01}) = d^k - 2f_0 - 1$, and $l(P_1[u_0^{j(1)}, v_0^{j(1)}]) = 1, 3, \cdots, d^k - 2f_1 - 1$. Therefore, the cycle C_{01} is of length from $d^k - 2f_0 + 2$ to $2 \times d^k - 2(f_0 + f_1)$ and contains the edge *e*.

Let $C_{012\cdots i}^*$ $(i = 1, 2, \cdots, d - 2)$ be a fault-free even ((i + 1) × d^k - $2\sum_{a=0}^{i} f_a$)-cycle containing the edge e. One can observe that there are at least $\frac{1}{2}$ × $(i+1)d^k - \sum_{i=1}^{l} f_a - 1$ disjoint edges such that each of them differs with e in the cycle $C_{012\cdots i}^*$. Since $k \ge 3$ and $\sum_{a=1}^{k+1} f_a \leq k - 1, \frac{1}{2} \times (i + 1) d^k - \sum_{a=1}^{i} f_a - i > 0$ $\sum_{a=i+1}^{k+1} f_a$. Therefore, $C_{012\cdots i}^*$ has an edge (u_i, v_i) , $(u_i, v_i) \in \{e, (u_1, v_1), \dots, (u_{i-1}, v_{i-1})\}, u_i^{j(m)}$ is a fault-free vertex in $Q_k^m(d)$, $v_i^{j(m)}$ is a fault-free vertex in $Q_k^m(d)$ ($m \in \{i + 1, i + 2, \dots, d - 1\}$), $h(u_i)$, $u_i^{j(m)}$) = 1, h (v_i , $v_i^{j(m)}$) = 1. We may assume that m = i + 1 ($m \neq i + 1$ is similar), *i*. *e*., $u_i^{j(i+1)}$ is a fault-free vertex in $Q_{i}^{k+1}(d)$, $v_{i}^{j(i+1)}$ is a fault-free vertex in $Q_k^{k+1}(d)$. The cycle $C_{012\cdots i}^*$ can be represented as $(u_i, v_i, P_{012\cdots i}[v_i, u_i], u_i)$ where *e* lies on the path $P_{012\cdots i}[v_i, u_i]$.

Since $f_{i+1} \leq k - 2$, by induction hypothesis, there are even cycles with lengths from 4 to d^{k} - $2f_{i+1}$ in $Q_k^{i+1}(d)$ that each cycle contains the edge $(u_i^{j(i+1)}, v_i^{j(i+1)})$. Let $C_{l_{i+1}} = (v_i^{j(i+1)}, u_i^{j(i+1)}, P_{i+1})$ $\lceil u_i^{j(i+1)}, v_i^{j(i+1)} \rceil, v_i^{j(i+1)} \rceil$) be an even l_{i+1} -cycle containing the edge $(u_i^{j(i+1)}, v_i^{j(i+1)})$ in $Q_k^{i+1}(d)$ where $4 \leq l_{i+1} \leq d^k - 2f_{i+1}$. Merging the two cycles $C_{012\cdots i}^*$ and $C_{l_{i+1}}$ as well as the two edges $(u_i, u_i^{j(i+1)})$ and $(v_i, v_i^{j(i+1)})$, we can construct a fault-free even cycle $C_{01\cdots i(i+1)} = (v_i, P_{01\cdots i} [v_i, u_i], u_i, u_i^{j(i+1)},$ $P_{i+1} \left[u_i^{j(i+1)}, v_i^{j(i+1)} \right], v_i^{j(i+1)}, v_i$ which contains e. Obviously, $l(C_{01\dots i(i+1)}) = l(P_{01\dots i}[v_i, u_i]) + l(P_{i+1})$ $[u_i^{j(i+1)}, v_i^{j(i+1)}]) + 2$ where $l(P_{01\cdots i}[v_i, u_i]) = (i + i)$ 1) × $d^k - 2\sum_{i=0}^{i} f_a - 1$, and $l(P_{i+1}[u_i^{j(i+1)}, v_i^{j(i+1)}]) =$ 1, 3, ..., $d^{k} - 2f_{i+1} - 1$. Therefore, the cycle $C_{01\cdots i(i+1)}$ is of length from $(i+1) \times d^k - 2\sum_{i=1}^{k} f_i + 2$ to $(i+2) \times d^k - 2\sum_{a=1}^{i+1} f_a$ and contains the edge *e*. **Case 2**: $e \notin E(Q_{k}^{0}(d)) \cup E(Q_{k}^{1}(d)) \cup \cdots \cup E$

 $(Q_{k}^{d-1}(d)), i. e., u \in Q_{k}^{l}(d)) (l \in \{0, 1, \dots, d-1\}),$

 $v \in Q_k^m(d) (m \in \{0, 1, \dots, d-1\}), l \neq m, e \text{ is an edge}$ of dimension j and $v = u^{j(a)} (j \in \{1, 2, \dots, k+1\}, a \in \{0, 1, \dots, d-1\}).$

We assume that $u \in Q_k^0(d)$ and $v \in Q_k^1(d)$ (If $u \notin Q_k^0(d)$ or $v \notin Q_k^1(d)$ is similar). Since $f_v \leq (k + 1)$ 1) -2 = k - 1, there is an integer $i (i \in \{1, 2, \dots, k + k\})$ 1}), $i \neq j$, such that $u^{i(a)}$ and $v^{i(a)}$ ($a \in \{0, 1, \dots, d -$ 1}) are fault-free. Thus, $(u, u^{i(a)}, v^{i(a)}, v, u)$ is a fault-free 4-cycle containing the edge e. Noting that u and $u^{i(a)}$ (respectively, v and $v^{i(a)}$) are adjacent in $Q_k^0(d)$ (respectively, $Q_k^1(d)$). Since $f_0 \leq k - 2$ and $f_1 \leq k - 2$, by induction hypothesis, there is an even l_0 -cycle in $Q_k^0(d)$ containing the edge $(u, u^{i(a)})$ such as $C_{l_0} = (u, u^{i(a)}, P_0[u^{i(a)}, u], u)$ and there is an even l_1 -cycle in $Q_k^1(d)$ containing the edge (v, $v^{i(a)}$) such as $C_{l_1} = (v^{i(a)}, v, P_1[v, v^{i(a)}], v^{i(a)})$ where $4 \leq l_0 \leq d^k - 2f_0$ and $4 \leq l_1 \leq d^k - 2f_1$. Combining the 4-cycle $(u, u^{i(a)}, v^{i(a)}, v, u)$ and a 4-cycle containing $(u, u^{i(a)})$ in $Q_k^0(d)$, the desired 6-cycle can be obtained. Merging the two cycles C_{l_0} and C_{l_1} as well as the two edges (u, v) and $(u^{i(a)}, v^{i(a)})$, we can construct a fault-free even cycle $C_{01} = (u, v, P_1)$ $[v, v^{i(a)}], v^{i(a)}, u^{i(a)}, P_0[u^{i(a)}, u], u)$ which contains e. Obviously, $l(C_{01}) = l(P_1 \lceil v, v^{i(a)} \rceil) + l(P_0)$ $\lceil u^{i(a)}, u \rceil \rangle + 2$ where $l(P_0 \lceil u^{i(a)}, u \rceil) = 3, 5, \cdots, d^k - d^k$ $2f_0 - 1$ and $l(P_1[v, v^{i(a)}]) = 3, 5, \dots, d^k - 2f_1 - 1$. This implies that $8 \le l(C_{01}) \le 2 \times d^k - 2(f_0 + f_1)$, $l(C_{01})$ is even and C_{01} contains the edge e.

Let $C_{012\cdots i}^{*}(i=1,2,\cdots,d-2)$ be a fault-free even $((i+1) \times d^{k} - 2\sum_{a=0}^{i} f_{a})$ -cycle containing the edge *e*. Similar to Case 1, we can construct a faultfree even cycle $C_{01\cdots i(i+1)} = (v_{i}, P_{01\cdots i} [v_{i}, u_{i}], u_{i}, u_{i}^{j(i+1)}, P_{i+1} [u_{i}^{j(i+1)}, v_{i}^{j(i+1)}], v_{i}^{j(i+1)}, v_{i})$ which contains *e*. The cycle $C_{01\cdots i(i+1)}$ is of length from $(i+1) \times d^{k} - 2\sum_{a=0}^{i} f_{a} + 2$ to $(i+2) \times d^{k} - 2\sum_{a=0}^{i} f_{a}$ and contains the edge *e*.

Since $|F| \leq n-2$ and the degree of any vertex of $Q_n(d)$ is n(d-1), any fault-free vertex of $Q_n(d)$ has at least n(d-2) + 2 fault-free neighbors. Thus, every fault-free vertex can be incident by a fault-free edge. Therefore, we have **Corollary 3** Let $n \ge 3$ be an integer. For any subset F of $V(Q_n(d))(d \ge 2, d$ is an even number) with $|F| \le n-2$, every vertex of $Q_n(d) - F$ lies on a fault-free cycle of every even length from 4 to $d^n - 2|F|$.

Applying Theorem 3. If d = 2, we have

Corollary 4^[2] Assuming that $n \ge 3$. For any subset F of $V(Q_n(d))$ with $|F| = f_v \le n-2$, every edge of $Q_n(d) - F$ lies on a cycle of every even length from 4 to $2^n - 2f_v$.

Applying Corollary 4. We have

Corollary 5^[2] Let $n \ge 3$ be an integer. For any subset F of $V(Q_n(d))$ with $|F| \le n-2$, every vertex of $Q_n - F$ lies on a fault-free cycle of every even length from 4 to $2^n - 2|F|$.

3 *d* is an odd number

Theorem 4 Let x and y be any two vertices in $Q_n(d)(n \ge 2)$ and l be any integer with $D(Q_n(d); x, y) \le l \le d^n - 1$. If d is an odd number, $l - D(Q_n(d); x, y)$ is an even number, then there is an xy-path of length l in $Q_n(d)$. Moreover, if $D(Q_n(d); x, y) = 1$, there is an xy-path of length $l = d^n - 1$ in $Q_n(d)$.

Proof Let $D(Q_n(d); x, y) = m$. The proof is based on the recursive structure of $Q_n(d)$ by induction on $n \ge 2$.

When n = 2, if $D(Q_n(d); x, y) = 1$. By the vertex-transitivity of $Q_2(d)^{[3]}$, without loss of generality, we can assume x = 00, y = 01.

 $x = 00 \rightarrow 01 = y, x = 00 \rightarrow 02 \rightarrow 03 \rightarrow 01 = y, x =$ $00 \rightarrow 02 \rightarrow 03 \rightarrow 04 \rightarrow 05 \rightarrow 01 = y, \dots, x = 00 \rightarrow 02 \rightarrow 03 \rightarrow$ $04 \rightarrow 05 \rightarrow \dots \rightarrow 0 (d - 3) \rightarrow 0 (d - 2) \rightarrow 01 = y$ are the *xy*-path of length $l = 1, 3, 5, \dots, d - 2$ in $Q_2(d)$.

 $x = 00 \rightarrow 10 \rightarrow 12 \rightarrow 02 \rightarrow 03 \rightarrow 04 \rightarrow 05 \rightarrow \cdots \rightarrow 0(d - 3) \rightarrow 0(d - 2) \rightarrow 01 = y, x = 00 \rightarrow 10 \rightarrow 20 \rightarrow 22 \rightarrow 12 \rightarrow 02 \rightarrow 03 \rightarrow 04 \rightarrow 05 \rightarrow \cdots \rightarrow 0(d - 3) \rightarrow 0(d - 2) \rightarrow 01 = y, \cdots$

 $x = 00 \rightarrow 10 \rightarrow 20 \rightarrow 30 \rightarrow 40 \rightarrow \dots \rightarrow (d-2)0 \rightarrow (d-1)0 \rightarrow (d-1)2 \rightarrow (d-2)2 \rightarrow \dots \rightarrow 22 \rightarrow 12 \rightarrow 02 \rightarrow 03 \rightarrow 13 \rightarrow 23 \rightarrow \dots \rightarrow (d-2)3 \rightarrow (d-1)3 \rightarrow (d-1)4 \rightarrow (d-2)4 \rightarrow \dots \rightarrow 0(d-4) \rightarrow 1(d-4) \rightarrow 2(d-4) \rightarrow \dots \rightarrow (d-2)(d-4) \rightarrow (d-1)(d-4) \rightarrow 1(d-4) \rightarrow 1(d-$

 $\begin{array}{l} (d-1)(d-3) \rightarrow (d-2)(d-3) \rightarrow \cdots \rightarrow 2(d-3) \rightarrow 1 \\ (d-3) \rightarrow 0(d-3) \rightarrow 0(d-2) \rightarrow 1(d-2) \rightarrow 2(d-2) \\ 2) \rightarrow \cdots \rightarrow (d-2)(d-2) \rightarrow (d-1)(d-2) \rightarrow (d-1) \\ 1 \rightarrow (d-2)1 \rightarrow \cdots \rightarrow 21 \rightarrow 11 \rightarrow 01 = y, \cdots. \end{array}$

 $x = 00 \rightarrow 10 \rightarrow 20 \rightarrow 30 \rightarrow 40 \rightarrow \dots \rightarrow (d-2)0 \rightarrow (d-1)0 \rightarrow (d-1)2 \rightarrow (d-2)2 \rightarrow \dots \rightarrow 22 \rightarrow 12 \rightarrow 02 \rightarrow 03 \rightarrow 13 \rightarrow 23 \rightarrow \dots \rightarrow (d-2)3 \rightarrow (d-1)3 \rightarrow (d-1)4 \rightarrow (d-2)4 \rightarrow \dots \rightarrow (d-2)(d-4) \rightarrow (d-4) \rightarrow 1(d-4) \rightarrow 2(d-4) \rightarrow \dots \rightarrow (d-2)(d-2)(d-4) \rightarrow (d-1)(d-4) \rightarrow (d-1)(d-3) \rightarrow (d-2)(d-3) \rightarrow \dots \rightarrow 2(d-3) \rightarrow 1(d-2) \rightarrow 2(d-2) \rightarrow (d-2)(d-2) \rightarrow 1(d-2) \rightarrow 2(d-2) \rightarrow (d-1)(d-2) \rightarrow (d-1)(d-2) \rightarrow (d-1)(d-2)(d-1) \rightarrow (d-2)(d-1) \rightarrow (d-3)1 \rightarrow (d-3)(d-1) \rightarrow (d-4)(d-1) \rightarrow (d-4)1 \rightarrow \dots \rightarrow 21 \rightarrow 2(d-1) \rightarrow 1(d-1) \rightarrow 11 \rightarrow 01 = y are the xy - path of length <math>l = d, d + 2, \dots, d^2 - d - 1, \dots, d^2 - 2$ in $Q_2(d)$.

 $x = 00 \rightarrow 10 \rightarrow 20 \rightarrow 30 \rightarrow 40 \rightarrow \dots \rightarrow (d - 2)0 \rightarrow (d - 1)0 \rightarrow (d - 1)2 \rightarrow (d - 2)2 \rightarrow \dots \rightarrow 22 \rightarrow 12 \rightarrow 02 \rightarrow 03 \rightarrow 13 \rightarrow 23 \rightarrow \dots \rightarrow (d - 2)3 \rightarrow (d - 1)3 \rightarrow (d - 1)4 \rightarrow (d - 2)4 \rightarrow \dots \rightarrow (d - 2)(d - 4) \rightarrow (d - 1)(d - 4) \rightarrow 2(d - 4) \rightarrow (d - 2)(d - 2)(d - 4) \rightarrow (d - 1)(d - 4) \rightarrow (d - 1)(d - 3) \rightarrow (d - 2)(d - 3) \rightarrow \dots \rightarrow 2(d - 3) \rightarrow 1$ $(d - 3) \rightarrow 0(d - 2) \rightarrow 0(d - 2) \rightarrow 1(d - 2) \rightarrow 2(d - 2) \rightarrow (d - 1)(d - 2) \rightarrow (d - 1)(d - 2)) \rightarrow (d - 1)(d - 2)(d - 1) \rightarrow (d - 2)(d - 1) \rightarrow (d - 2)1 \rightarrow (d - 3)1 \rightarrow (d - 3)(d - 1) \rightarrow (d - 4)(d - 1) \rightarrow (d - 4)(d - 1) \rightarrow (d - 4)1 \rightarrow \dots \rightarrow 21 \rightarrow 2(d - 1) \rightarrow 0(d - 1) \rightarrow 1(d - 1) \rightarrow 11 \rightarrow 01 = y \text{ is the } xy \text{-path of length } l = d^2 - 1 \text{ in } Q_2(d).$

The rest of the inductive proof are similar to Theorem 1.

Applying Theorem 4, we have

Corollary 6 For any $n \ge 2$, every edge of $Q_n(d)(d \ge 3, d \text{ is an odd number})$ lies on a cycle of every even length from 4 to $d^n - 1$. Moreover, every edge of $Q_n(d)$ lies on a cycle of length d^n .

Similar to Lemma 3. We have

Lemma 5 For any subset F of $V(Q_2(d))(d \ge 3, d \text{ is an odd number})$ with $|F| \le 1$, every edge of $Q_2(d) - F$ lies on a fault-free k-cycle, $k = 4, 6, \cdots, d^2 - 2|F| - 1$. Moreover, every edge of $Q_2(d) - F$ lies on a fault-free $(d^2 - 2|F|)$ -cycle.

Similar to Lemma 4, applying Theorem 4 and Lemma 5. We have

Lemma 6 For any subset F of $V(Q_3(d))(d \ge$

3,*d* is an odd number) with $|F| \leq 1$, every edge of $Q_3(d) - F$ lies on a fault-free *k*-cycle, $k = 4, 6, \cdots, d^3 - 2|F| - 1$. Moreover, every edge of $Q_3(d) - F$ lies on a fault-free $(d^3 - 2|F|)$ -cycle.

Similar to Lemma 6, we have

Theorem 5 Let $n \ge 3$ be an integer and $Q_n(d)$ $(d \ge 3, d \text{ is an odd number})$ has exactly one faulty vertex. Then, every fault-free edge of $Q_n(d)$ lies on a fault-free cycle of every even length from 4 to $d^n - 3$. Moreover, every fault-free edge of $Q_n(d)$ lies on a fault-free cycle of length $d^n - 2$.

Theorem 6 Let $n \ge 3$ be an integer. For any subset F of $V(Q_n(d))(d \ge 3, d)$ is an odd number) with $|F| = f_v \le n-2$, every edge of $Q_n(d) - F$ lies on a cycle of every even length from 4 to $d^n - 2f_v - 1$. Moreover, every edge of $Q_n(d) - F$ lies on a cycle of length $d^n - 2f_v$.

Proof We prove this theorem by induction on n. By Lemma 6, Theorem 6 holds for n = 3. Assuming that the theorem is true for every integer k ($3 \le k \le n$). Let F be a subset of $V(Q_{k+1}(d))$ and $|F| = f_v$. By Corollary 6 and Theorem 5, Theorem 6 holds for $f_v \le 1$. Thus, we only consider the case of $2 \le f_v \le n-2$.

Let w and z be two distinct faulty vertices. By Lemma $1, Q_{k+1}(d)$ can be partitioned along dimension j ($j \in \{1, 2, \dots, k+1\}$) into d copies $Q_k(d)$, denoted by $Q_k^i(d)$ ($i = 0, 1, \dots, d-1$), $w \in Q_k^l(d)$, $z \in Q_k^m(d)$ ($l, m \in \{0, 1, 2, \dots, d-1\}$, $l \neq m$). Let $f_i = |F \cap V(Q_k^i(d))|$, $i = 0, 1, 2, \dots, d-1$, $i. e., f_v = \sum_{i=0}^{d-1} f_i$. Therefore, $f_i \leqslant k-2, i = 0, 1, 2, \dots, d-1$. Let e = (u, v) be a fault-free edge of $Q_{k+1}(d) - F$. In order to prove this theorem, we establish every even l-cycle containing e where $4 \leqslant l \leqslant d^{k+1} - 2f_v - 1$, and a $(d^{k+1} - 2f_v)$ -cycle containing e.

Case 1: $e \in E(Q_k^0(d)) \cup E(Q_k^1(d)) \cup \cdots \cup E(Q_k^{d-1}(d)), i.e., e$ lies on $Q_k^i(d)(i \in \{0, 1, 2, \cdots, d-1\})$. We only consider that $e \in E(Q_k^0(d)) (e \notin E(Q_k^0(d)))$ is similar).

Since $f_0 \leq k - 2$, by induction hypothesis, there is a fault-free even l_0 -cycle in $Q_k^0(d)$ containing the edge e where $4 \leq l_0 \leq d^k - 2f_0 - 1$, and there exists a

fault-free $(d^{k} - 2f_{0})$ -cycle in $Q_{k}^{0}(d)$ containing the edge e. Thus, the cycle of every even length from 4 to $d^{k} - 2f_{0} - 1$ containing the edge e in $Q_{k+1}(d)$ can be found in $Q_k^0(d)$. Let $C_{l_0^{*'}}(C_{l_0^{*'}})$ be a fault-free even l_0^* -cycle ($l_0^{*'}$ -cycle) containing the edge e in Q_k^0 (d) where $l_0^* = d^k - 2f_0 - 1(l_0^{*'} = d^k - 2f_0)$. One can observe that there are at least $\frac{1}{2} \times (d^k - 1)$ $f_0 - 1$ disjoint edges such that each of them differs with e in the cycle $C_{l_0^*}$ ($C_{l_0^{*'}}$). Since $k \ge 3$ and $\sum_{i=1}^{k+1} f_i \leq k-1, \frac{1}{2} \times (d^k - 1) - f_0 - 1 > \sum_{i=1}^{k+1} f_i.$ Therefore, $C_{L^*}(C_{L^{*'}})$ has an edge $(u_0, v_0), (u_0, v_0) \neq e$, $u_0^{j(m)}$ is a fault-free vertex in $Q_k^m(d)$, $v_0^{j(m)}$ is a faultfree vertex in $Q_k^m(d)$ $(m \in \{1, 2, \dots, d-1\}, h(u_0, \dots, d-1)\}$ $u_0^{j(m)}$) = 1, h (v_0 , $v_0^{j(m)}$) = 1. We may assume that m = 1 ($m \neq 1$ is similar), *i.e.*, $u_0^{j(1)}$ is a fault-free vertex in $Q_k^1(d)$, $v_0^{j(1)}$ is a fault-free vertex in Q_k^1 (d). The cycle $C_{l_{a}^{*}}$ ($C_{l_{a}^{*'}}$) can be represented as $(u_0, v_0, P_0[v_0, u_0], u_0)$ where e lies on the path P_0 $\begin{bmatrix} v_0, u_0 \end{bmatrix}$.

Since $f_1 \leq k - 2$, by induction hypothesis, there are even cycles with lengths from 4 to $d^{k} - 2f_{1} - 1$ in $Q_k^1(d)$ that each cycle contains the edge $(u_0^{j(1)})$, $v_0^{j(1)}$), and there is a cycle of length $d^k - 2f_1$ in Q_k^1 (d) that the cycle contains the edge $(u_0^{j(1)}, v_0^{j(1)})$. Let $C_{l_1} = (v_0^{j(1)}, u_0^{j(1)}, P_1[u_0^{j(1)}, v_0^{j(1)}], v_0^{j(1)})$ be an even l_1 -cycle containing the edge $(u_0^{j(1)}, v_0^{j(1)})$ in Q_k^1 (d) where $4 \leq l_1 \leq d^k - 2f_1 - 1$, $C_{l_1} = (v_0^{j(1)}, u_0^{j(1)})$, $P_1[u_0^{j(1)}, v_0^{j(1)}], v_0^{j(1)})$ be a $(d^k - 2f_1)$ -cycle containing the edge $(u_0^{j(1)}, v_0^{j(1)})$ in $Q_k^1(d)$. Merging the two cycles $C_{l_0^*}$ and C_{l_1} as well as the two edges $(u_0, u_0^{j(1)})$ and $(v_0, v_0^{j(1)})$, we can construct a faultfree even cycle $C_{01} = (v_0, P_0 [v_0, u_0], u_0, u_0^{j(1)})$ $P_1[u_0^{j(1)}, v_0^{j(1)}], v_0^{j(1)}, v_0)$ which contains e. Obviously, $l(C_{01}) = l(P_0[v_0, u_0]) + l(P_1[u_0^{j(1)},$ $v_0^{j(1)}$]) + 2 where $l(P_0[v_0, u_0]) = d^k - 2f_0 - 2$, and $l(P_1[u_0^{j(1)}, v_0^{j(1)}]) = 1, 3, \dots, d^k - 2f_1 - 1$. Therefore, the cycle C_{01} is of length from $d^k - 2f_0 + 1$ to 2 $\times d^{k} - 2(f_{0} + f_{1}) - 2$ and contains the edge e. Merging the two cycles $C_{l_{\alpha}^{*'}}$ and $C_{l_{\alpha}^{'}}$ as well as the two edges $(u_0, u_0^{j^{(1)}})$ and $(v_0, v_0^{j^{(1)}})$, we can construct a fault-free even cycle $C_{01}^{'} = (v_0, P_0[v_0, u_0], u_0, u_0^{j^{(1)}})$, $P_1[u_0^{j^{(1)}}, v_0^{j^{(1)}}], v_0^{j^{(1)}}, v_0)$ which contains *e*. Obviously, $l(C_{01}^{'}) = l(P_0[v_0, u_0]) + l(P_1[u_0^{j^{(1)}}], v_0^{j^{(1)}}]) + 2$ where $l(P_0[v_0, u_0]) = d^k - 2f_0 - 1$ and $l(P_1[u_0^{j^{(1)}}, v_0^{j^{(1)}}]) = d^k - 2f_1 - 1$. Therefore, the cycle $C_{01}^{'}$ is $(2 \times d^k - 2(f_0 + f_1))$ -cycle and contains the edge *e*.

Let $C_{012,\dots,i}^{*}$ $(i = 1, 3, \dots, d - 4, d - 2)$ be a faultfree even $((i + 1) \times d^k - 2\sum_{i=1}^{i} f_a)$ -cycle containing the edge e. One can observe that there are at least $\frac{1}{2} \times (i+1) d^k - \sum_{a=0}^{i} f_a - 1$ disjoint edges such that each of them differs with *e* in the cycle $C_{012,\dots,i}^*$. Since $k \ge 3 \text{ and } \sum_{i=0}^{k+1} f_a \le k-1, \frac{1}{2} \times (i+1)d^k - \sum_{i=0}^{i} f_a - 1 > 1$ $\sum_{i=1}^{k+1} f_a$. Therefore, $C_{012,\dots i}^*$ has an edge (u_i, v_i) , (u_i, v_i) . $v_i) \notin \{e, (u_1, v_1), \cdots, (u_{i-1}, v_{i-1})\}, u_i^{j(m)}$ is a faultfree vertex in $Q_{i}^{m}(d)$, $v_{i}^{j(m)}$ is a fault-free vertex in $Q_{i}^{m}(d)(m \in \{i+1, i+2, \cdots, d-1\}), h(u_{i}, u_{i}^{j(m)}) =$ 1, $h(v_i, v_i^{j(m)}) = 1$. We may assume that m = i + 1 $(m \neq i + 1 \text{ is similar}), i.e., u_i^{j(i+1)}$ is a fault-free vertex in $Q_k^{i+1}(d)$, $v_i^{j(i+1)}$ is a fault-free vertex in Q_k^{i+1} (*d*). The cycle $C_{012,\dots i}^*$ can be represented as (u_i, v_i) $P_{012\cdots i} [v_i, u_i], u_i$) where *e* lies on the $P_{012\cdots i}[v_i, u_i].$

Since $f_{i+1} \leq k - 2$, by induction hypothesis, there are even cycles with lengths from 4 to $d^k - 2f_{i+1} - 1$ in $Q_k^{i+1}(d)$ that each cycle contains the edge $(u_i^{j(i+1)}, v_i^{j(i+1)})$, and there is a $(d^k - 2f_{i+11})$ cycle in $Q_k^{i+1}(d)$ that the cycle contains the edge $(u_i^{j(i+1)}, v_i^{j(i+1)})$. Let $C_{l_{i+1}} = (v_i^{j(i+1)}, u_i^{j(i+1)}, p_{i+1}[u_i^{j(i+1)}, v_i^{j(i+1)}], v_i^{j(i+1)})$ be an even l_{i+1} -cycle containing the edge $(u_i^{j(i+1)}, v_i^{j(i+1)})$ in $Q_k^{i+1}(d)$ where $4 \leq l_{i+1} \leq d^k - 2f_{i+1} - 1$, $C_{l_{i+1}} = (v_i^{j(i+1)}, u_i^{j(i+1)})$, $u_i^{j(i+1)}, P_{i+1}[u_i^{j(i+1)}, v_i^{j(i+1)}], v_i^{j(i+1)})$ be a $(d^k - 2f_{i+11})$ -cycle containing the edge $(u_i^{j(i+1)}, v_i^{j(i+1)})$ in $Q_k^{i+1}(d)$. Merging the two cycles $C_{012,\dots i}^*$ and $C_{l_{i+1}}$ as well as the two edges $(u_i, u_i^{j(i+1)})$ and $(v_i, v_i^{j(i+1)})$, we can construct a fault-free even cycle $C_{01\dots i(i+1)} = (v_i^{j(i+1)}], v_i^{j(i+1)}]$,

 $v_i^{j(i+1)}$, v_i) which contains *e*. Obviously, $l(C_{01\cdots i(i+1)}) = l(P_{01\cdots i}[v_i, u_i]) + l(P_{i+1}[u_i^{j(i+1)}],$ $v_i^{j(i+1)}] + 2$ where $l(P_{01\cdots i}[v_i, u_i]) = (i+1) \times d^k - 2$ $\sum_{a=0}^{i} f_{a} = 1, \text{ and } l(P_{i+1}[u_{i}^{j(i+1)}, v_{i}^{j(i+1)}]) = 1, 3, \cdots,$ $d^{k} = 2f_{i+1} = 2$. Therefore, the cycle $C_{01\cdots i(i+1)}$ is of length from $(i + 1) \times d^k - 2\sum_{a=0}^{i} f_a + 2$ to $(i + 2) \times$ $d^{k} = 2\sum_{a=0}^{i} f_{a} = 1$ and contains the edge *e*. Merging the two cycles $C^*_{_{012},\cdots i}$ and $C_{_{l_{i+1}}}$ as well as the two edges $(u_i, u_i^{j(i+1)})$ and $(v_i, v_i^{j(i+1)})$, we can construct a fault-free even cycle $C'_{01\cdots i(i+1)} = (v_i, P_{01\cdots i}[v_i, u_i]),$ $u_i, u_i^{j(i+1)}, P_{i+1}[u_i^{j(i+1)}, v_i^{j(i+1)}], v_i^{j(i+1)}, v_i)$ which contains e. Obviously, $l(C_{01\cdots i(i+1)}^{'}) = l(P_{01\cdots i}[v_{i}, u_{i}]) + l(P_{i+1}[u_{i}^{j(i+1)},$ $v_i^{j(i+1)}$]) + 2 where $l(P_{01\cdots i}[v_i, u_i]) = (i+1) \times d^k 2\sum_{a}^{i} f_{a} - 1$ and $l(P_{i+1}[u_{i}^{j(i+1)}, v_{i}^{j(i+1)}]) = d^{k} - d^{k}$ $2f_{i+1} = 1$. Therefore, the cycle $C'_{01\cdots i(i+1)}$ is

 $((i+2) \times d^k - 2\sum_{a=0}^{i} f_a)$ - cycle and contains the edge e.

Let $C_{012,\dots i}^{*}$ $(i = 2, 4, \dots, d - 5, d - 3)$ be a faultfree even $((i + 1) \times d^k - 2\sum_{i=1}^{i} f_a - 1)$ -cycle containing the edge e , $C_{\scriptscriptstyle 012, \cdots i}^{\;*'}$ be a fault-free ((i + 1) \times $d^{k} = 2 \sum_{a=0}^{k} f_{a}$)-cycle containing the edge *e*. One can observe that there are at least $\frac{1}{2} \times \left[(i+1)d^k - 1 \right] -$ $\sum f_a = 1$ disjoint edges such that each of them differs with e in the cycle $C_{012,\dots i}^*$. Since $k \ge 3$ and $\sum_{a=0}^{k+1} f_a \leqslant k-1, \frac{1}{2} \times \left[(i+1) d^k - 1 \right] - \sum_{a=0}^{i} f_a - i >$ $\sum_{a=i+1}^{k+1} f_a$. Therefore, $C_{012,\dots i}^* (C_{012,\dots i}^{*'})$ has an edge (u_i, u_i) v_i , $(u_i, v_i) \notin \{e, (u_1, v_1), \cdots, (u_{i-1}, v_{i-1})\}, u_i^{j(m)}$ is a fault-free vertex in $Q_k^m(d)$, $v_i^{j(m)}$ is a fault-free vertex in $Q_k^m(d)$ ($m \in \{i + 1, i + 2, \dots, d - 1\}$), $h(u_i)$, $u_i^{j(m)}$) = 1, h (v_i , $v_i^{j(m)}$) = 1. We may assume that m = i + 1 ($m \neq i + 1$ is similar), *i.e.*, $u_i^{j(i+1)}$ is a fault-free vertex in $Q_k^{i+1}(d)$, $v_i^{j(i+1)}$ is a fault-free vertex in $Q_k^{i+1}(d)$. The cycle $C_{012,\dots i}^*(C_{012,\dots i}^{i'})$ can be represented as $(u_i, v_i, P_{012\cdots i} [v_i, u_i], u_i)$ where e

lies on the $P_{012\cdots i}[v_i, u_i]$.

Since $f_{i+1} \leq k - 2$, by induction hypothesis, there are even cycles with lengths from 4 to d^k - $2f_{i+1} = 1$ in $Q_k^{i+1}(d)$ that each cycle contains the edge $(u_i^{j(i+1)}, v_i^{j(i+1)})$, and there is a $(d^k - 2f_{i+11})$ cycle in $Q_k^{i+1}(d)$ that the cycle contains the edge $(u_i^{j(i+1)}, v_i^{j(i+1)})$. Let $C_{l_{i+1}} = (v_i^{j(i+1)}, u_i^{j(i+1)}, P_{i+1})$ $[u_i^{j(i+1)}, v_i^{j(i+1)}], v_i^{j(i+1)})$ be an even l_{i+1} -cycle containing the edge $(u_i^{j(i+1)}, v_i^{j(i+1)})$ in $Q_k^{i+1}(d)$ where $4 \leq l_{i+1} \leq d^{k} - 2f_{i+1} - 1, C_{l_{i+1}} = (v_{i}^{j(i+1)}, u_{i}^{j(i+1)},$ $P_{i+1}[u_i^{j(i+1)}, v_i^{j(i+1)}], v_i^{j(i+1)}]$ be a $(d^k - 2f_{i+1})$ -cycle containing the edge $(u_i^{j(i+1)}, v_i^{j(i+1)})$ in $Q_k^{i+1}(d)$. Merging the two cycles $C_{012,\dots i}^*$ and $C_{1\dots}$ as well as the two edges $(u_i, u_i^{j(i+1)})$ and $(v_i, v_i^{j(i+1)})$, we can construct a fault-free even cycle $C_{01\cdots i(i+1)} = (v_i,$ $P_{01\cdots i} [v_i, u_i], u_i, u_i^{j(i+1)}, P_{i+1} [u_i^{j(i+1)}, v_i^{j(i+1)}],$ $v_i^{j(i+1)}$, v_i) which contains *e*. Obviously, $l(C_{01\cdots i(i+1)}) = l(P_{01\cdots i}[v_i, u_i]) + l(P_{i+1}[u_i^{j(i+1)}],$ $v_i^{j(i+1)}$] + 2 where $l(P_{01\cdots i}[v_i, u_i]) = (i+1) \times d^k - 2$ $\sum_{a=0}^{i} f_{a} = 2, \text{ and } l(P_{i+1}[u_{i}^{j(i+1)}, v_{i}^{j(i+1)}]) = 1, 3, \cdots,$ $d^{k} - 2f_{i+1} - 2$. Therefore, the cycle $C_{01\cdots i(i+1)}$ is of length from $(i + 1) \times d^k - 2\sum_{i=1}^{i} f_a + 1$ to $(i + 2) \times d^k$ $d^{k} = 2 \sum_{a=1}^{i+1} f_{a} = 2$ and contains the edge *e*. Merging the two cycles ${C_{012,\cdots i}^{*'}}$ and ${C_{i_{\dots i}}}$ as well as the two edges $(u_i, u_i^{j(i+1)})$ and $(v_i, v_i^{j(i+1)})$, we can construct a fault-free even cycle $C_{01\cdots i(i+1)}^{\prime} = (v_i, P_{01\cdots i}[v_i, u_i]),$ $u_i, u_i^{j(i+1)}, P_{i+1} [u_i^{j(i+1)}, v_i^{j(i+1)}], v_i^{j(i+1)}, v_i$ which contains e. Obviously, $l(C'_{01\cdots i(i+1)}) = l(P_{01\cdots i}[v_i,$ u_{i}]) + $l(P_{i+1}[u_{i}^{j(i+1)}, v_{i}^{j(i+1)}])$ + 2 where $l(P_{01\dots i})$ $[v_i, u_i]) = (i+1) \times d^k - 2 \sum_{i=1}^{i} f_a - 1 \text{ and } l(P_{i+1})$ $[u_i^{j(i+1)}, v_i^{j(i+1)}]) = d^k - 2f_{i+1} - 1$. Therefore, the cycle $C_{01\dots i(i+1)}^{'}$ is $((i+2) \times d^{k} - 2\sum_{a=0}^{i+1} f_{a})$ -cycle and contains the edge e.

Case 2: $e \notin E(Q_k^0(d)) \cup E(Q_k^1(d)) \cup \cdots \cup E(Q_k^{d-1}(d)), i. e., u \in Q_k^l(d) (l \in \{0, 1, \cdots, d-1\}), v \in Q_k^m(d) (m \in \{0, 1, \cdots, d-1\}), l \neq m, e \text{ is an edge of dimension } j \text{ and } v = u^{j(a)} (j \in \{1, 2, \cdots, k+1\}, a \in \{0, 1, \cdots, d-1\}).$

The proof of Case 2 is similar to the proof of

Case 2 of Theorem 3.

Applying Theorem 6, we have

Corollary 7 Let $n \ge 3$ be an integer. For any subset F of $V(Q_n(d))(d \ge 3, d)$ is an odd number) with $|F| \le n-2$, every vertex of $Q_n(d) - F$ lies on a fault-free cycle of every even length from 4 to $d^n - 2 |F|$. Moreover, every vertex of $Q_n(d) - F$ lies on a fault-free cycle of length $d^n - 2 |F|$.

References

- LI T K, TSAI C H, TAN J J M, et al. Bipanconnectivity and edge-fault-tolerant bipancyclicity of hypercubes [J]. Information Processing Letters, 2003, 87:107-110.
- [2] TSAI C H. Cycles embedding in hyperbes with node failures [J]. Information Processing Letters, 2007, 102(6):242-246.
- [3] XU J M. Combinatorial theory in networks [M]. Beijing:Science Press, 2013.
- [4] HWANG S C, CHEN G H. Cycles in butterfly graphs

[J]. Networks, 2000, 35(2):161-171.

- [5] SAAD Y, SCHULTZ M H. Topological properties of hypercubes [J]. IEEE Transactions on Computers, 1988,37(7):867-872.
- [6] XU J M, DU Z Z, XU M. Edge-fault-tolerant edge-bipancyclicity of hypercubes [J]. Information Processing Letters, 2005, 96:146-150.
- [7] FU J S. Fault-tolerant cycle embedding in the hypercube[J]. Parallel Computing, 2003, 29(6):821-832.
- [8] STEWART I A, XIANG Y. Bipanconnectivity and bipancyclicity in k-ary n-cubes [J]. IEEE Transactions on Parallel and Distributed Systems, 2009, 20(1):25-33.
- [9] CHENG D Q, HAO R X, FENG Y Q. Vertex-fault-tolerant cycles embedding in balanced hypercubes [J]. Information Sciences, 2014. 288: 449-461.
- [10] HAO R X,ZHANG R,FENG Y Q,et al. Hamiltonian cycle embedding for fault tolerance in balanced hypercubes [J]. Applied Mathematics and Computation, 2014,244,447-456.

有节点故障的 d 进制 n 维方的圈嵌入

李赵祥

(中央民族大学理学院,北京 100081)

摘要:互连网络的容错能力是并行计算中的一个关键问题,而 d 进制 n 维方(超方的一般形式)在计算机的互连网络中已得到广泛的应用。本文考虑有节点故障的 d 进制 n 维方的容错性。F 是 d 进制 n 维方 $Q_n(d)$ 中的错误点集($n \ge 3$),且 $|F| \le n - 2$,证明了 $Q_n(d)$ 的每个无故障的边和无故障的点存在于长从 4 到 $d^n - 2|F|$ 的无故障偶圈中。而且,当 d 是奇数时, $Q_n(d)$ 的每个无故障的边和无故障的点存在于长为 $d^n - 2|F|$ 的无故障圈中。

关键词:圈嵌入 超方 故障容错 互联网络 d进制

责任编辑:米慧芝

■ 微信公众号投稿更便捷 联系电话:0771-2503923 邮箱:gxkx@gxas.cn 投稿系统网址:http://gxkx.ijournal.cn/gxkx/ch