－特邀专稿

Cycles Embedding in \boldsymbol{d}－Ary \boldsymbol{n}－Dimensional Cube With Node Failures＊

LI Zhaoxiang
（College of Science，Minzu University of China，Beijing，100081，China）

Abstract

The d－ary n－dimensional cube（the general form of hypercube）has been widely used as the inter－ connection network in parallel computers．The fault－tolerant capacity of an interconnection network is a criti－ cal issue in parallel computing．In this article，we consider the fault－tolerant capacity of the d－ary n－dimen－ sional cube．Let F be a set of faulty vertices in $Q_{n}(d)(n \geqslant 3)$ with $|F| \leqslant n-2$ ，we prove that every fault－free edge and fault－free vertex（node）of $Q_{n}(d)$ lies on a fault－free cycle of every even length from 4 to d^{n}－ $2|F|$ ．Moreover，if d is an odd number，every fault－free edge and fault－free vertex（node）of $Q_{n}(d)$ lies on a fault－free cycle of length $d^{n}-2|F|$ ．

Key words：cycle embedding，hypercube，fault－tolerant，interconnection network，d－ary

中图分类号：O157．5 文献标识码：A 文章编号：1005－9164（2021）04－0341－12
DOI：10．13656／j．cnki．gxkx．20211109． 002

0 Introduction

Network topology is usually represented by a graph where vertices represent processor and edges represent links between processors ${ }^{[1]}$ ．The hyper－ cube has been widely used as the interconnection network in parallel computers ${ }^{[2,3]}$ ．The n－dimension－ al generalized hypercube，denoted by $Q\left(d_{1}, d_{2}, \cdots\right.$ ， $\left.d_{n}\right)$ ，where $d_{i}(\geqslant 2)$ is an integer for each $i=1$ ， $2, \cdots, n$ ．The vertex－set of $Q\left(d_{1}, d_{2}, \cdots, d_{n}\right)$ is the
set $V=\left\{x_{1} x_{2} \cdots x_{n}: x_{i} \in\left\{0,1, \cdots, d_{i}-1\right\}, i=1\right.$ ， $2, \cdots, n\}$ and two vertices $x=x_{1} x_{2} \cdots x_{n}$ and $y=$ $y_{1} y_{2} \cdots y_{n}$ are linked by an edge if and only if they differ exactly in one coordinate．If $d_{1}=d_{2}=\cdots=$ $d_{n}=d \geqslant 2$ ，then $Q(d, d, \cdots, d)$ is called the d－ary n－dimensional cube，denoted by $Q_{n}(d)$ ．It is clear that $Q_{n}(2)$ is hypercube Q_{n} ．For two vertices u and v in $Q_{n}(d)$ ，the Hamming distance $h(u, v)$ between two vertices u and v is the number of different bits in the corresponding strings of both vertices；and

[^0]
广西科学，2021年，28卷，第4期 Guangxi Sciences，2021，Vol． 28 No． 4

the distance between u and v ，denoted by $D\left(Q_{n}\right.$ $(d) ; u, v)$ ，is the length of the shortest path be－ tween u and v ．Obviously，$h(u, v)=D\left(Q_{n}(d) ; u\right.$ ， $v)$ ．Let $u=u_{1} u_{2} \cdots u_{n}$ be a vertex of $Q_{n}(d), u^{j(a)}=$ $v=v_{1} v_{2} \cdots v_{n}$ is also a vertex of $Q_{n}(d), v_{i}=u_{i}(1 \leqslant$ $i \leqslant n, i \neq j, j \in\{1,2, \cdots, n\}), v_{j} \neq u_{j}, v_{j}=a \in\{0,1$, $2, \cdots, d-1\}$ ．A vertex is fault－free if it is not faulty． An edge is fault－free if the two end－vertices and the link between them are not faulty．A cycle of length k is called k－cycle．A graph G is vertex－transitive if for any given pair (x, y) of vertices in G there is some $\theta \in \operatorname{Aut}(G)(\operatorname{Aut}(G)$ is an automorphism group of G ）such that $y=\theta(x)$ ．

The cycle embedding problem deals with all possible lengths of the cycles in a given graph，it is investigated in a lot of interconnection networks ${ }^{[4]}$ ． The fault－tolerant capacity of an interconnection network is a critical issue in parallel computing ${ }^{[2]}$ ． For hypercube Q_{n} ，Saad and Schultz ${ }^{[5]}$ proved that an even cycle of length k exists for each even integer between 4 and 2^{n} ．Let f_{e}（respectively，f_{v} ）be the number of faulty edges（respectively，vertices）in Q_{n} ．If $f_{e} \leqslant n-2$ ，Li et al．${ }^{[1]}$ proved that every fault－ free edge of $Q_{n}(n \geqslant 3)$ lies on a fault－free cycle of every even length from 4 to 2^{n} ．If $f_{e} \leqslant n-1$ and all faulty edges are not incident with the same vertex， Xu et al．${ }^{[6]}$ showed that every fault－free edge of Q_{n} （ $n \geqslant 4$ ）lies on a fault－free cycle of every even length from 6 to 2^{n} ． $\mathrm{Fu}^{[7]}$ proved that a fault－free cycle of length with at least $2^{n}-2 f_{v}$ can be embedded in Q_{n} with $f_{v} \leqslant 2 n-4$ ．If $f_{v} \leqslant 2 n-2$ ，Tsai ${ }^{[2]}$ proved that every fault－free edge and fault－free vertex of Q_{n} lies on a fault－free cycle of every even length from 4 to $2^{n}-2 f_{v}$ ．Stewart and Xiang ${ }^{[8]}$ studied the bipancon－ nectivity and bipancyclicity in k－ary n－cubes．Cheng et al．${ }^{[9]}$ studied the vertex－fault－tolerant cycles em－ bedding in balanced hypercubes with faulty edges； Hao et al．${ }^{[10]}$ studied the hamiltonian cycle embed－ ding for fault tolerance in balanced hypercubes．

In this article，we study the cycle embedding in $Q_{n}(d)$ ．For any subset F of $V\left(Q_{n}(d)\right)(n \geqslant 3)$ with $|F| \leqslant n-2$ ，we prove that every fault－free edge and fault－free vertex（node）of $Q_{n}(d)$ lies on a fault－free
cycle of every even length from 4 to $d^{n}-2|F|$ ．If $d=2$ ，these results are the results of Tsai ${ }^{[2]}$ ．

1 Preliminaries

The n－bit Gray code is a ring sequence of n－bit numbers（the number of each coordinate is selected from $\{0,1,2, \cdots, d-1\}$ ）such that any two succes－ sive numbers have one and only one different bit and so that all numbers having n bits are represented． The n－bit Gray code is denoted by G_{n} ．If d is an e－ ven number．One starts with the sequence of the d 1 －bit numbers $0,1,2, \cdots, d-1$ ．This is a 1 －bit Gray code，i．e．,$G_{1}=\{0,1,2, \cdots, d-1\}$ ．To obtain a 2－bit Gray code G_{2} ，take the same sequence and insert a zero in front of each number，then take the sequence in reverse order and insert a one in front of each number，take the same sequence and insert a 2 in front of each number，then take the sequence in re－ verse order and insert a 3 in front of each number， take the same sequence and insert a $d-2$ in front of each number，then take the sequence in reverse or－ der and insert a $d-1$ in front of each number．In other words，from $G_{1}=\{0,1,2, \cdots, d-1\}$ ，we get a 2－bit Gray code $G_{2}=\{00,01, \cdots, 0(d-2), 0(d-1)$ ， $1(d-1), 1(d-2), \cdots, 11,10, \cdots,(d-2) 0,(d-2)$ $1, \cdots,(d-2)(d-2),(d-2)(d-1),(d-1)(d-$ $1),(d-1)(d-2), \cdots,(d-1) 1,(d-1) 0\}$ ．More generally，denoted by G_{n}^{R} the sequence obtained from G_{n} by reversing its order，and by $m G_{n}, m=0,1$ ， $2, \cdots, d-1$（respectively，$m G_{n}^{R}$ ）the sequence ob－ tained from G_{n} by inserting a m in front of each ele－ ment of the sequence，then an $(n+1)$－bit Gray code can be generated by the recursion $G_{n+1}=\left\{0 G_{n}\right.$ ， $\left.1 G_{n}^{R}, 2 G_{n}, 3 G_{n}^{R}, \cdots,(d-2) G_{n},(d-1) G_{n}^{R}\right\}$ ．If d is an odd number，Gray codes can be similar to gener－ ate．

Let V_{n} be the set of vertices of $Q_{n}(d)$ ．For a given $i(0 \leqslant i \leqslant d-1)$ ，let $i V_{n-1}$ be the subset of ver－ tices of $Q_{n}(d)$ whose fist coordinate is i ．Thus the set of vertices of $Q_{n}(d)$ can be decomposed into d disjoint subsets $0 V_{n-1}, 1 V_{n-1}, \cdots,(d-1) V_{n-1}$ ．We use $i Q_{n-1}(d)$ to denote the subgraph of $Q_{n}(d)$ in－ duced by $i V_{n-1}$ ．Then $i Q_{n-1}(d)$ is isomorphic to
$Q_{n-1}(d)$ ．It is often convenient to write $Q_{n}(d)=$ $0 Q_{n-1}(d) \Theta 1 Q_{n-1}(d) \Theta \cdots \Theta(d-1) Q_{n-1}(d)$ ．

Lemma 1 Let u and v be two distinct vertices of $Q_{n}(d)$ ．Then，there is a partition which can parti－ tion $Q_{n}(d)$ into d copies $Q_{n-1}(d)$ ，denoted by Q_{n-1}^{i} （d）$(i \| 0,1, \cdots, d-1)$ such that $u \in V\left(Q_{n-1}^{m}(d)\right)$ and $v \in V\left(Q_{n-1}^{k}(d)\right)(m, k \in\{0,1,2, \cdots, d-1\}$ ， $m \neq k\}$ 。

Proof Let $u=u_{1} u_{2} \cdots u_{n}$ and $v=v_{1} v_{2} \cdots v_{n}$ ． Since u and v are distinct vertices，there is an index $j\left(j \in\{1,2, \cdots, n\}\right.$ such that $u_{j} \neq v_{j}, u_{j} \in\{0,1, \cdots$, $d-1\}, v_{j} \in\{0,1, \cdots, d-1\}$ ．Therefore，$Q_{n}(d)$ can be partitioned along dimension j into d copies Q_{n-1} （d）such that one contains u and the other contains v ．

Lemma 2 Let $e=(u, v)$ be an edge of Q_{n} (d) ．Then，there is a partition which can partition $Q_{n}(d)$ into d copies $Q_{n-1}(d)$ ，denoted by $Q_{n-1}^{i}(d)$ （ $i=0,1, \cdots, d-1$ ）such that $u \in V\left(Q_{n-1}^{m}(d)\right)$ and $v \in V\left(Q_{n-1}^{m}(d)\right)(m \in\{0,1,2, \cdots d-1\})$, i．e．，e is an edge of $Q_{n-1}^{m}(d)$ ．

Proof Let $e=(u, v)$ be an edge of $Q_{n}(d)$ ， $u=u_{1} u_{2} \cdots u_{n}, v=v_{1} v_{2} \cdots v_{n}$ ，then，there is an index i $(i \in\{1,2, \cdots, n\})$ such that $u_{i} \neq v_{i}, u_{j}=v_{j}(1 \leqslant j \leqslant$ $n, j \neq i)$ ．Therefore，$Q_{n}(d)$ can be partitioned along dimension j into d copies $Q_{n-1}(d)$ such that $e \in$ $E\left(Q_{n-1}^{m}(d)\right)(m \in\{0,1,2, \cdots, d-1\})$ ．

$2 d$ is an even number

Theorem 1 Let x and y be any two vertices in $Q_{n}(d)(n \geqslant 2)$ and l be any integer with $D\left(Q_{n}(d)\right.$ ； $x, y) \leqslant l \leqslant d^{n}-1$ ．If d is an even number and l－ $D\left(Q_{n}(d) ; x, y\right)$ is also an even number，then there is an $x y$－path of length l in $Q_{n}(d)$ ．

Proof Let $D\left(Q_{n}(d) ; x, y\right)=m$ ．The proof is based on the recursive structure of $Q_{n}(d)$ by induc－ tion on $n \geqslant 2$ ．When $n=2$ ，if $D\left(Q_{2}(d) ; x, y\right)=1$ ．By the vertex－transitivity of $Q_{2}(d)^{[3]}$ ，without loss of generality，we can assume $x=00, y=01$ ．

$$
x=00 \rightarrow 01=y, x=00 \rightarrow 02 \rightarrow 03 \rightarrow 01=y, x=
$$ $00 \rightarrow 02 \rightarrow 03 \rightarrow 04 \rightarrow 05 \rightarrow 01=y, \cdots, x=00 \rightarrow 02 \rightarrow 03 \rightarrow$ $04 \rightarrow 05 \rightarrow \cdots \rightarrow 0(d-2) \rightarrow 0(d-1) \rightarrow 01=y$ are the

$x y$－path of length $l=1,3,5, \cdots, d-1$ in $Q_{2}(d)$ ．

$$
x=00 \rightarrow 10 \rightarrow 12 \rightarrow 02 \rightarrow 03 \rightarrow 04 \rightarrow 05 \rightarrow \cdots \rightarrow 0(d-
$$ 2）$\rightarrow 0(d-1) \rightarrow 01=y . x=00 \rightarrow 10 \rightarrow 20 \rightarrow 22 \rightarrow 12 \rightarrow$ $02 \rightarrow 03 \rightarrow 04 \rightarrow 05 \rightarrow \cdots \rightarrow 0(d-2) \rightarrow 0(d-1) \rightarrow 01=$ $y . \cdots, x=00 \rightarrow 10 \rightarrow 20 \rightarrow 30 \rightarrow 40 \rightarrow \cdots \rightarrow(d-2) 0 \rightarrow$ $(d-1) 0 \rightarrow(d-1) 2 \rightarrow(d-2) 2 \rightarrow \cdots \rightarrow 22 \rightarrow 12 \rightarrow 02 \rightarrow$ $03 \rightarrow 04 \rightarrow 05 \rightarrow \cdots \rightarrow 0(d-2) \rightarrow 0(d-1) \rightarrow 01=y . \cdots$ ． $x=00 \rightarrow 10 \rightarrow 20 \rightarrow 30 \rightarrow 40 \rightarrow \cdots \rightarrow(d-2) 0 \rightarrow(d-1)$ $0 \rightarrow(d-1) 2 \rightarrow(d-2) 2 \rightarrow \cdots \rightarrow 22 \rightarrow 12 \rightarrow 02 \rightarrow 03 \rightarrow$ $13 \rightarrow 23 \rightarrow \cdots \rightarrow(d-2) 3 \rightarrow(d-1) 3 \rightarrow(d-1) 4 \rightarrow(d-$ 2） $4 \rightarrow \cdots \rightarrow 24 \rightarrow 14 \rightarrow 04 \rightarrow 05 \rightarrow \cdots \rightarrow 0(d-1) \rightarrow 1(d-$ $1) \rightarrow 2(d-1) \rightarrow \cdots \rightarrow(d-2)(d-1) \rightarrow(d-1)$ $(d-1) \rightarrow(d-1) 1 \rightarrow(d-2) 1 \rightarrow \cdots \rightarrow 21 \rightarrow 11 \rightarrow 01=y$ are the $x y$－path of length $l=d+1, d+3, \cdots, 3(d-$ 1），$\cdots, d^{2}-1$ in $Q_{2}(d)$ ．

When $n=2$ ，if $D\left(Q_{2}(d) ; x, y\right)=2$ ．By the ver－ tex－transitivity of $Q_{2}(d)^{[3]}$ ，without loss of general－ ity，we can assume $x=00, y=11$ ．
$x=00 \rightarrow 10 \rightarrow 11=y, x=00 \rightarrow 20 \rightarrow 30 \rightarrow 10 \rightarrow 11=$ $y . x=00 \rightarrow 20 \rightarrow 30 \rightarrow 40 \rightarrow 50 \rightarrow 10 \rightarrow 11=y . \cdots . x=$ $00 \rightarrow 20 \rightarrow 30 \rightarrow 40 \rightarrow 50 \rightarrow \cdots \rightarrow(d-2) 0 \rightarrow(d-1) 0 \rightarrow$ $10 \rightarrow 11=y$ are the $x y$－path of length $l=2,4,6, \cdots$, d in $Q_{2}(d)$ ．
$x=00 \rightarrow 01 \rightarrow 21 \rightarrow 20 \rightarrow 30 \rightarrow 40 \rightarrow 50 \rightarrow \cdots \rightarrow(d-$ 2） $0 \rightarrow(d-1) 0 \rightarrow 10 \rightarrow 11=y . x=00 \rightarrow 01 \rightarrow 02 \rightarrow 22 \rightarrow$ $21 \rightarrow 20 \rightarrow 30 \rightarrow 40 \rightarrow 50 \rightarrow \cdots \rightarrow(d-2) 0 \rightarrow(d-1) 0 \rightarrow$ $10 \rightarrow 11=y . \cdots . x=00 \rightarrow 01 \rightarrow 02 \rightarrow \cdots \rightarrow 0(d-2) \rightarrow 0$ $(d-1) \rightarrow 2(d-1) \rightarrow 2(d-2) \rightarrow \cdots \rightarrow 22 \rightarrow 21 \rightarrow 20 \rightarrow$ $30 \rightarrow 40 \rightarrow \cdots(d-3) 0 \rightarrow(d-2) 0 \rightarrow(d-1) 0 \rightarrow 10 \rightarrow$ $11=y . \cdots, x=00 \rightarrow 01 \rightarrow 02 \rightarrow \cdots \rightarrow 0(d-2) \rightarrow 0(d-$ 1）$\rightarrow 2(d-1) \rightarrow 2(d-2) \rightarrow \cdots \rightarrow 22 \rightarrow 21 \rightarrow 20 \rightarrow 30 \rightarrow$ $31 \rightarrow 32 \rightarrow \cdots \rightarrow 3(d-2) \rightarrow 3(d-1) \rightarrow 4(d-1) \rightarrow$ $4(d-2) \rightarrow \cdots \rightarrow 42 \rightarrow 41 \rightarrow 40 \rightarrow \cdots \rightarrow(d-3) 0 \rightarrow(d-$ 3） $1 \rightarrow(d-3) 2 \rightarrow \cdots \rightarrow(d-3)(d-2) \rightarrow(d-3)$ $(d-1) \rightarrow(d-2)(d-1) \rightarrow(d-2)(d-2) \rightarrow \cdots \rightarrow$ $(d-2) 2 \rightarrow(d-2) 1 \rightarrow(d-2) 0 \rightarrow(d-1) 0 \rightarrow(d-$ 1） $2 \rightarrow(d-1) 3 \rightarrow \cdots \rightarrow(d-1)(d-2) \rightarrow(d-1)(d-$ $1) \rightarrow 1(d-1) \rightarrow 1(d-2) \rightarrow \cdots \rightarrow 13 \rightarrow 12 \rightarrow 10 \rightarrow 11=y$ are the $x y$－path of length $l=d+2, d+4, \cdots, 3 d-$ $2, \cdots, d^{2}-2$ in $Q_{2}(d)$ ．

Assuming the theorem holds for any k with $2 \leqslant$ $k<n$ ．Let $x=x_{1} x_{2} \cdots x_{n}$ and $y=y_{1} y_{2} \cdots y_{n}$ be any two vertices with distance m in $Q_{n}(d)$ and let l be

广西科学，2021年，28 卷，第 4 期 Guangxi Sciences，2021，Vol． 28 No． 4

an integer with $m \leqslant l \leqslant d^{n}-1$ and $l-m$ is an even number．Let $Q_{n}(d)=0 Q_{n-1}(d) \Theta 1 Q_{n-1}(d) \Theta \cdots$ $\Theta(d-1) Q_{n-1}(d)$ ．

Case $1 \quad m<n$
By the vertex－transitivity of $Q_{n}(d)^{[3]}$ ，without loss of generality，we can assume $x, y \in V\left(0 Q_{n-1}\right.$ （d））．By the induction hypothesis，there is an $x y-$ path of length l in $Q_{n}(d)$ ，where $m \leqslant l \leqslant d^{n-1}-1$ ．

Assuming $d^{n-1} \leqslant l \leqslant 2 \times d^{n-1}-1$ ．Let P_{0} be the longest $x y$－path in $0 Q_{n-1}(d)$ ，the length of P_{0} is $l_{P_{0}}$ and $l_{P_{0}}-m$ is an even number．We have $l_{P_{0}}=$ $d^{n-1}-1$ if m is odd and $l_{P_{0}}=d^{n-1}-2$ if m is even． Let $l_{1}=l-l_{P_{0}}-1$ ．Then l_{1} is odd and less than d^{n-1} ．Let $u v$ be any edge in P_{0} ，and $u, v \in 0 Q_{n-1}$ （d），$u \neq x, u \neq y, v \neq x, v \neq y$ ．Then $P_{0}=P_{0_{x u}}+$ $u v+P_{0_{v y}}$ ．Let u^{\prime} and v^{\prime} be neighbors of u and v in $1 Q_{n-1}(d)$ ．By the induction hypothesis，there is a $u^{\prime} v^{\prime}$－path P_{1} of length l_{1} in $1 Q_{n-1}(d)$ ．Then $P_{0_{x u}}+$ $u u^{\prime}+P_{1}+v^{\prime} v+P_{0_{v y}}$ is an $x y$－path of length l in $0 Q_{n-1}(d) \Theta 1 Q_{n-1}(d)$ ，this is also an $x y$－path of length l in $Q_{n}(d)$ ．

Assuming $2 \times d^{n-1} \leqslant l \leqslant 3 \times d^{n-1}-1$ ．Let P_{01} be the longest $x y$－path in $0 Q_{n-1}(d) \Theta 1 Q_{n-1}(d)$ ，the length of P_{01} is $l_{P_{01}}$ and $l_{P_{01}}-m$ is an even number． We have $l_{P_{01}}=2 \times d^{n-1}-1$ if m is odd and $l_{P_{01}}=2 \times$ $d^{n-1}-2$ if m is even．Let $l_{2}=l-l_{P_{01}}-1$ ．Then l_{2} is odd and less than d^{n-1} ．Let $u_{1} v_{1}$ be any edge in P_{01} ， and $u_{1}, v_{1} \in 1 Q_{n-1}(d), u_{1} \neq u^{\prime}, u_{1} \neq v^{\prime}, v_{1} \neq u^{\prime}, v_{1} \neq$ v^{\prime} ．Then $P_{01}=P_{01_{x u_{1}}}+u_{1} v_{1}+P_{01_{v_{1} y}}$ ．Let $u^{\prime}{ }_{1}$ and $v_{1}{ }^{\prime}$ be neighbors of u_{1} and v_{1} in $2 Q_{n-1}(d)$ ．By the in－ duction hypothesis，there is an $u^{\prime}{ }_{1} v_{1}{ }^{\prime}$－path P_{2} of length l_{2} in $2 Q_{n-1}(d)$ ．Then $P_{01_{x u_{1}}}+u_{1} u_{1}{ }^{\prime}+P_{2}+$ $v_{1}^{\prime} v_{1}+P_{01_{v_{1} y}}$ is an $x y$－path of length l in $0 Q_{n-1}(d)$ $\Theta 1 Q_{n-1}(d) \Theta 2 Q_{n-1}(d)$ ，this is also an $x y$－path of length l in $Q_{n}(d)$ ．
\cdots, \cdots, \cdots
Assuming $(d-1) \times d^{n-1} \leqslant l \leqslant d^{n}-1$ ．Let $P_{01 \cdots(d-2)}$ be the longest $x y$－path in $0 Q_{n-1}(d)$ $\Theta 1 Q_{n-1}(d) \Theta \cdots \Theta(d-2) Q_{n-1}(d)$ ，the length of $P_{01 \cdots(d-2)}$ is $l_{P_{01 \cdots(d-2)}}$ and $l_{P_{01 \cdots(d-2)}}-m$ is an even number．We have $P_{01 \cdots(d-2)}=(d-1) \times d^{n-1}-1$ if m is odd and $P_{01 \cdots(d-2)}=(d-1) \times d^{n-1}-2$ if m is e－
ven．Let $l_{d-1}=l-l_{P_{01 \cdots(d-2)}}-1$ ．Then l_{d-1} is odd and less than d^{n-1} ．Let $u_{d-2} v_{d-2}$ be any edge in $P_{01 \cdots(d-2)}$ ，and $u_{d-2}, v_{d-2} \in(d-2) Q_{n-1}(d), u_{d-2} \neq$ $u_{d-3}^{\prime}, u_{d-2} \neq v_{d-3}^{\prime}, v_{d-2} \neq u^{\prime}{ }_{d-3}, v_{d-2} \neq v^{\prime}{ }_{d-3}$ ．Then $P_{01 \cdots(d-2)}=P_{01 \cdots(d-2)_{x u_{d-2}}}+u_{d-2} v_{d-2}+$ $P_{01 \cdots(d-2)_{v_{d-2}}}$ ．Let $u^{\prime}{ }_{d-2}$ and $v^{\prime}{ }_{d-2}$ be neighbors of u_{d-2} and v_{d-2} in $(d-1) Q_{n-1}(d)$ ．By the induction hypothesis，there is an $u^{\prime}{ }_{d-2} v^{\prime}{ }_{d-2}$－path P_{d-1} of length l_{d-1} in $(d-1) Q_{n-1}(d)$ ．Then $P_{01 \cdots(d-2)_{x u_{d-2}}}+u_{d-2} u_{d-2}^{\prime}+P_{d-1}+v_{d-2}^{\prime} v_{d-2}+$ $P_{01 \cdots(d-2)_{v_{d-2}}}$ is an $x y$－path of length l in $Q_{n}(d)$ ．

Case $2 m=n$

By the vertex－transitivity of $Q_{n}(d)^{[3]}$ ，without loss of generality，we can assume $x \in V\left(0 Q_{n-1}(d)\right)$ ， $y \in V\left(1 Q_{n-1}(d)\right)$ ．Let v be a neighbor of y in $1 Q_{n-1}$ $(d), u$ be the neighbor of v in $0 Q_{n-1}(d)$ ．Then $D\left(Q_{n-1}(d) ; x, u\right)=n-2$ ．

If $n \leqslant l \leqslant d^{n-1}+1$ ．By the induction hypothesis， there is an $x u$－path P of length $l-2$ in $0 Q_{n-1}(d)$ ， Then $P+u v+v y$ is an $x y$－path of length l in $Q_{n}(d)$ 。

If $d^{n-1}+2 \leqslant l \leqslant 2 \times d^{n-1}-1$ ．Let P_{0} be the lon－ gest $x u$－path in $0 Q_{n-1}(d)$ ，the length of P_{0} is $l_{P_{0}}$ and $l_{P_{0}}-m$ is an even number．We have $l_{P_{0}}=$ $d^{n-1}-1$ if m is odd and $l_{P_{0}}=d^{n-1}-2$ if m is even． Let $l_{1}=l-l_{P_{0}}-1$ ．Then l_{1} is odd and less than d^{n-1} ．By the induction hypothesis，there is a $v y$－path P_{1} of length l_{1} in $1 Q_{n-1}(d)$ ．Then $P_{0}+u v+P_{1}$ is an $x y$－path of length l in $0 Q_{n-1}(d) \Theta 1 Q_{n-1}(d)$ ，this is also an $x y$－path of length l in $Q_{n}(d)$ ．

If $2 \times d^{n-1} \leqslant l \leqslant 3 \times d^{n-1}-1$ ．Let P_{01} be the lon－ gest $x y$－path in $0 Q_{n-1}(d) \Theta 1 Q_{n-1}(d)$ ，the length of P_{01} is $l_{P_{01}}$ and $l_{P_{01}}-m$ is an even number．We have $l_{P_{01}}=2 \times d^{n-1}-1$ if m is odd and $l_{P_{01}}=2 \times d^{n-1}-2$ if m is even．Let $l_{2}=l-l_{P_{01}}-1$ ．Then l_{2} is odd and less than d^{n-1} ．Let $u_{1} v_{1}$ be any edge in P_{01} ，and u_{1} ， $v_{1} \in 1 Q_{n-1}(d), u_{1} \neq v, u_{1} \neq y, v_{1} \neq v, v_{1} \neq y$ ．Then $P_{01}=P_{01_{x u_{1}}}+u_{1} v_{1}+P_{01_{v_{1} y}}$ ．Let $u^{\prime}{ }_{1}$ and $v^{\prime}{ }_{1}$ be neighbors of u_{1} and v_{1} in $2 Q_{n-1}(d)$ ．By the induc－ tion hypothesis，there is an $u^{\prime}{ }_{1} v^{\prime}{ }_{1}$－path P_{2} of length l_{2} in $2 Q_{n-1}(d)$ ．Then $P_{01_{x u_{1}}}+u_{1} u^{\prime}{ }_{1}+P_{2}+v^{\prime}{ }_{1} v_{1}+$
$P_{01_{v_{1} y}}$ is an $x y$－path of length l in $0 Q_{n-1}(d) \Theta 1 Q_{n-1}$ （d）$\Theta 2 Q_{n-1}(d)$ ，this is also an $x y$－path of length l in $Q_{n}(d)$ ．

The rest of the proof is similar to Case 1.
By the induction principle，the theorem fol－ lows．

Applying Theorem 1，we have
Corollary 1 For any $n \geqslant 2$ ，every edge of $Q_{n}(d)(d \geqslant 2, d$ is an even number）lies on a cycle of every even length from 4 to d^{n} ．

Applying Theorem 1．If $d=2$ ，we have
Corollary $2^{[1,3]}$ Let x and y be any two verti－ ces in $Q_{n}(n \geqslant 2)$ and l be any integer with $D\left(Q_{n}\right.$ ； $x, y) \leqslant l \leqslant 2^{n}-1$ ．If $l-D\left(Q_{n} ; x, y\right)$ is an even number，then there is an $x y$－path of length l in Q_{n} ．

Let F be a set of faulty vertices in $Q_{n}(d)$ ．
Lemma 3 For any subset F of $V\left(Q_{2}(d)\right)(d \geqslant$ $4, d$ is an even number）with $|F| \leqslant 1$ ，every edge of $Q_{2}(d)-F$ lies on a fault－free k－cycle，$k=4,6, \cdots$ ， $d^{2}-2|F|$ ．

Proof In this article，the operation is modulo d ．By corollary 1 ，we only consider $|F|=1$ ．Since $Q_{2}(d)$ is vertex－transitive ${ }^{[3]}$ ，without loss of gener－ ality，we may assume that the faulty vertex is $w=$ 00 ．Let $e=(u, v)=\left(x_{1}^{*} x_{2}^{*}, x_{1}^{*} x_{2}^{* *}\right)$ be a fault－free edge of $Q_{2}(d)$ ．We may assume that $x_{1}^{*} \neq 0\left(x_{1}^{*}=0\right.$ is similar $),\left(x_{1}^{*} x_{2}^{*}, x_{1}^{*}\left(x_{2}^{*}+1\right), \cdots, x_{1}^{*}\left(x_{2}^{*}+2 i\right)\right.$ ， $\left.x_{1}^{*} x_{2}^{* *}, x_{1}^{*} x_{2}^{*}\right)\left(i=1,2, \cdots, \frac{d-2}{2}\right.$ ；If $x_{2}^{*}+j=$ $x_{2}^{* *}, j=1,2, \cdots, 2 i, x_{2}^{*}+j$ is replaced by $x_{2}^{*}+2 i+$ 1 is a $(2 i+2)$－cycle and contains the edge e ．
$\left(x_{1}^{*} x_{2}^{*}, x_{1}^{*}\left(x_{2}^{*}+1\right), \cdots, x_{1}^{*}\left(x_{2}^{*}+d-2\right), x_{1}^{*}\right.$ $\left(x_{2}^{*}+d-1\right), \cdots,\left(x_{1}^{*}+k\right)\left(x_{2}^{*}+k \times(d-1)\right)$ ， $\left(x_{1}^{*}+k\right)\left(x_{2}^{*}+k \times(d-1)+1\right), \cdots,\left(x_{1}^{*}+k\right)\left(x_{2}^{*}+\right.$ $\left.k \times(d-1)+2 i),\left(x_{1}^{*}+k\right) x_{2}^{*}, x_{1}^{*} x_{2}^{* *}, x_{1}^{*} x_{2}^{*}\right)$ $\left(k=1,2, \cdots, d-2 ; i=0,1, \cdots, \frac{d-2}{2}\right.$ ；If $x_{1}^{*}+k=0$ ， $x_{1}^{*}+k$ is replaced by $x_{1}^{*}+k+1$ ．If $x_{2}^{* *}=$ $\left(x_{2}^{*}+k \times(d-1)+j\right) \bmod d, j=1,2, \cdots, 2 i, x_{2}^{*}+$ $k \times(d-1)+j$ is replaced by $x_{2}^{*}+k \times(d-1)+$ $2 i+1)$ is a $(k \times d+2 i+2)$－cycle and contains the edge e ．

We may assume that $x_{2}^{* *} \neq 0\left(x_{2}^{* *}=0\right.$ simi－ lar），$\left(x_{1}^{*} x_{2}^{*}, x_{1}^{*}\left(x_{2}^{*}+1\right), \cdots, x_{1}^{*}\left(x_{2}^{*}+d-2\right), x_{1}^{*}\right.$ $\left(x_{2}^{*}+d-1\right),\left(x_{1}^{*}+1\right)\left(x_{2}^{*}+d-1\right),\left(x_{1}^{*}+1\right)$ $\left(x_{2}^{*}+d\right), \cdots,\left(x_{1}^{*}+1\right)\left(x_{2}^{*}+2 \times(d-1)\right), \cdots$, $\left(x_{1}^{*}+d-2\right)\left(x_{2}^{*}+(d-2)(d-1)\right),\left(x_{1}^{*}+d-2\right)$ $\left(x_{2}^{*}+(d-2)(d-1)+1\right), \cdots,\left(x_{1}^{*}+d-2\right)\left(x_{2}^{*}+\right.$ $(d-1)(d-1)), 0\left(x_{2}^{*}+(d-1)(d-1)\right), 0\left(x_{2}^{*}+\right.$ $(d-1)(d-1)+1), \cdots, 0\left(x_{2}^{*}+(d-1)(d-1)+\right.$ 2i）， $\left.0 x_{2}^{* *}, x_{1}^{*} x_{2}^{* *}, x_{1}^{*} x_{2}^{*}\right),\left(i=0,1, \cdots, \frac{d-2}{2}\right.$ ；If $0=\left(x_{2}^{*}+(d-1) \times(d-1)+j\right) \bmod d, j=1,2, \cdots$ ， $2 i, x_{2}^{*}+(d-1) \times(d-1)+j$ is replaced by $x_{2}^{*}+$ $(d-1) \times(d-1)+2 i+1)$ is a $((d-1) \times d+2 i+$ $2)$ and contains the edge e ．

Lemma 4 For any subset F of $V\left(Q_{3}(d)\right)(d \geqslant$ $2, d$ is an even number）with $|F| \leqslant 1$ ，every edge of $Q_{3}(d)-F$ lies on a fault－free k－cycle，$k=4,6, \cdots$ ， $d^{3}-2|F|$ ．

Proof By Corollary 1，we only consider $|F|=$ 1．Since $Q_{3}(d)$ is vertex－transitive ${ }^{[3]}$ ，without loss of generality，we may assume that the faulty vertex is $w=000$ ．Let $e=(u, v)$ be a fault－free edge of Q_{3} （d）．By Lemma 2，$Q_{3}(d)$ can be partitioned into $d Q_{2}(d)$ ，denoted by $Q_{2}^{i}(d), 0 \leqslant i \leqslant d-1 ; e \in Q_{n-1}^{m}$ （d）$(m \in\{1,2, \cdots, d-1\})$ ．Without loss of generali－ ty，we may assume that $Q_{3}(d)$ is partitioned along dimension $j(j \in\{1,2,3\})$ into $d Q_{2}(d), e \in Q_{2}^{1}(d)$ （If $e \notin Q_{2}^{1}(d)$ is similar）．By Corollary 1 ，there is a fault－free even k－cycle in $Q_{2}^{1}(d)$ containing the edge e where $4 \leqslant k \leqslant d^{2}$ ．Thus，the cycle of every even length from 4 to d^{2} containing the edge e in $Q_{3}(d)$ can be found in $Q_{2}^{1}(d)$ ．Let C_{1}^{*} be a fault－free even d^{2}－cycle containing the edge e in $Q_{2}^{1}(d)$ ．Because $d^{2} \geqslant 4$ ，therefore，C_{1}^{*} has an edge $\left(u_{1}, v_{1}\right),\left(u_{1}\right.$ ， $\left.v_{1}\right) \neq e$ ，the cycle C_{1}^{*} can be represented as $\left(u_{1}, v_{1}\right.$ ， $\left.P_{1}\left[v_{1}, u_{1}\right], u_{1}\right)$ where e lies on the path $P_{1}\left[v_{1}\right.$ ， $\left.u_{1}\right]$ ．
$u_{1}^{j(2)} \in Q_{2}^{2}(d), v_{1}^{j(2)} \in Q_{2}^{2}(d), h\left(u_{1}, v_{1}\right)=1$, $h\left(u_{1}, u_{1}^{j(2)}\right)=1, h\left(v_{1}, v_{1}^{j(2)}\right)=1, h\left(u_{1}^{j(2)}, v_{1}^{j(2)}\right)=1$. By Corollary 1，there are even cycles with lengths from 4 to d^{2} inclusive in $Q_{2}^{2}(d)$ that each cycle con－ tains the edge $\left(u_{1}^{j(2)}, v_{1}^{j(2)}\right)$ ．Let $C_{l_{2}}=\left(v_{1}^{j(2)}, u_{1}^{j(2)}\right.$ ，
$\left.P_{2}\left[u_{1}^{j(2)}, v_{1}^{j(2)}\right], v_{1}^{j(2)}\right)$ be an even l_{2}－cycle containing the edge $\left(u_{1}^{j(2)}, v_{1}^{j(2)}\right)$ in $Q_{2}^{2}(d)$ where $4 \leqslant l_{2} \leqslant d^{2}$ ． Merging the two cycles C_{1}^{*} and $C_{l_{2}}$ as well as the two edge $\left(u_{1}, u_{1}^{j(2)}\right)$ and $\left(v_{1}, v_{1}^{j(2)}\right)$ ，we can con－ struct a fault－free even cycle $C_{12}=\left(v_{1}, P_{1}\left[v_{1}, u_{1}\right]\right.$ ， $\left.u_{1}, u_{1}^{j(2)}, P_{2}\left[u_{1}^{j(2)}, v_{1}^{j(2)}\right], v_{1}^{j(2)}, v_{1}\right)$ which contains e ．Obviously，$l\left(C_{12}\right)=l\left(P_{1}\left[v_{1}, u_{1}\right]\right)+l\left(P_{2}\left[u_{1}^{j(2)}\right.\right.$, $\left.\left.v_{1}^{j(2)}\right]\right)+2$ where $l\left(P_{1}\left[v_{1}, u_{1}\right]\right)=d^{2}-1$ and $l\left(P_{2}\right.$ $\left.\left[u_{1}^{j(2)}, v_{1}^{j(2)}\right]\right)=1,3, \cdots, d^{2}-1$ ．Therefore，C_{12} is an even cycle of length from $d^{2}+2$ to $2 d^{2}$ and contains the edge e ．

Let $C_{12 \ldots i}^{*}(i=2,3, \cdots, d-2)$ be a fault－free even $i \times d^{2}$－cycle containing the edge $e . C_{12 \ldots i}^{*}$ has an edge $\left(u_{i}, v_{i}\right),\left(u_{i}, v_{i}\right) \notin\left\{e,\left(u_{1}, v_{1}\right), \cdots,\left(u_{i-1}, v_{i-1}\right)\right\}$, the cycle $C_{12 \ldots i}^{*}$ can be represented as $\left(u_{i}, v_{i}, P_{12 \ldots i}\right.$ $\left[v_{i}, u_{i}\right], u_{i}$ ）where e lies on the path $P_{12 \cdots i}\left[v_{i}, u_{i}\right]$ ． $u_{i}^{j(i+1)} \in Q_{2}^{i+1}(d), v_{i}^{j(i+1)} \in Q_{2}^{i+1}(d), h\left(u_{i}, v_{i}\right)=1$, $h\left(u_{i}, u_{i}^{j(i+1)}\right)=1, h\left(v_{i}, v_{i}^{j(i+1)}\right)=1, h\left(u_{i}^{j(i+1)}\right.$ ， $\left.v_{i}^{j(i+1)}\right)=1$ ．By Corollary 1，there are even cycles with lengths from 4 to d^{2} inclusive in $Q_{2}^{i+1}(d)$ that each cycle contains the edge（ $u_{i}^{j(i+1)}, v_{i}^{j(i+1)}$ ）．Let $C_{l_{i+1}}=\left(v_{i}^{j(i+1)}, u_{i}^{j(i+1)}, P_{i+1}\left[u_{i}^{j(i+1)}, v_{i}^{j(i+1)}\right], v_{i}^{j(i+1)}\right)$ be an even l_{i+1}－cycle containing the edge（ $u_{i}^{j(i+1)}$ ， $\left.v_{i}^{j(i+1)}\right)$ in $Q_{2}^{i+1}(d)$ where $4 \leqslant l_{i+1} \leqslant d^{2}$ ．Merging the two cycles $C_{12 \ldots i}^{*}$ and $C_{l_{i+1}}$ as well as the two edge $\left(u_{i}, u_{i}^{J(i+1)}\right)$ and $\left(v_{i}, v_{i}^{J(i+1)}\right)$ ，we can construct a fault－free even cycle $C_{12 \cdots(i+1)}=\left(v_{i}, P_{12 \cdots i}\left[v_{i}, u_{i}\right]\right.$ ， $\left.u_{i}, u_{i}^{j(i+1)}, P_{i+1}\left[u_{i}^{j(i+1)}, v_{i}^{j(i+1)}\right], v_{i}^{j(i+1)}, v_{i}\right)$ which contains e ．Obviously，$l\left(C_{12 \cdots(i+1)}\right)=l\left(P_{12 \cdots i}\left[v_{i}\right.\right.$, $\left.\left.u_{i}\right]\right)+l\left(P_{i+1}\left[u_{i}^{j(i+1)}, v_{i}^{j(i+1)}\right]\right)+2$ where $l\left(P_{12 \ldots i}\right.$ $\left.\left[v_{i}, u_{i}\right]\right)=i \times d^{2}-1$ and $l\left(P_{i+1}\left[u_{i}^{j(i+1)}, v_{i}^{j(i+1)}\right]\right)=$ $1,3, \cdots, d^{2}-1$ ．Therefore，$C_{12 \cdots(i+1)}$ is an even cycle of length from $i \times d^{2}+2$ to $(i+1) \times d^{2}$ and con－ tains the edge e ．

Let $C_{12 \ldots(d-1)}^{*}$ be a fault－free even $(d-1) \times d^{2}-$ cycle containing the edge $e . C_{12 \cdots(d-1)}^{*}$ has an edge $\left(u_{d-1}, v_{d-1}\right),\left(u_{d-1}, v_{d-1}\right) \notin\left\{e,\left(u_{1}, v_{1}\right), \cdots,\left(u_{d-2}\right.\right.$, $\left.\left.v_{d-2}\right)\right\}$ ，the cycle $C_{12 \cdots(d-1)}^{*}$ can be represented as $\left(u_{d-1}, v_{d-1}, P_{12 \cdots(d-1)}\left[v_{d-1}, u_{d-1}\right], u_{d-1}\right)$ where e lies on the path $P_{12 \cdots(d-1)}\left[v_{d-1}, u_{d-1}\right] . u_{d-1}^{j(0)} \in$ $Q_{2}^{0}(d)-F, v_{d-1}^{j(0)} \in Q_{2}^{0}(d)-F, h\left(u_{d-1}, v_{d-1}\right)=1$,
$h\left(u_{d-1}, u_{d-1}^{j(0)}\right)=1, h\left(v_{d-1}, v_{d-1}^{j(0)}\right)=1, h\left(u_{d-1}^{j(0)}\right.$, $\left.v_{d-1}^{j(0)}\right)=1$ ．By Lemma 3，there are even cycles with lengths from 4 to $d^{2}-2|F|$ inclusive in $Q_{2}^{0}(d)-F$ that each cycle contains the edge $\left(u_{d-1}^{j(0)}, v_{d-1}^{j(0)}\right)$ ．Let $C_{l_{0}}=\left(v_{d-1}^{j(0)}, u_{d-1}^{j(0)}, P_{0}\left[u_{d-1}^{j(0)}, v_{d-1}^{j(0)}\right], v_{d-1}^{j(0)}\right)$ be an even l_{0}－cycle containing the edge $\left(u_{d-1}^{j(0)}, v_{d-1}^{j(0)}\right)$ in $Q_{2}^{0}(d)-F$ where $4 \leqslant l_{0} \leqslant d^{2}-2|F|$ ．Merging the two cycles $C_{12 \ldots(d-1)}^{*}$ and $C_{l_{0}}$ as well as the two edge $\left(u_{d-1}, u_{d-1}^{J(0)}\right)$ and $\left(v_{d-1}, v_{d-1}^{J(0)}\right)$ ，we can construct a fault－free even cycle $C_{12 \cdots(d-1) 0}=\left(v_{d-1}, P_{12 \cdots(d-1)}\right.$ $\left[v_{d-1}, u_{d-1}\right], u_{d-1}, u_{d-1}^{j(0)}, P_{0}\left[u_{d-1}^{j(0)}, v_{d-1}^{j(0)}\right], v_{d-1}^{j(d-1)}$ ， $\left.v_{d-1}\right)$ which contains e ．Obviously，$l\left(C_{12 \cdots(d-1) 0}\right)=l$ $\left(P_{12 \cdots(d-1)}\left[v_{d-1}, u_{d-1}\right]\right)+l\left(P_{0}\left[u_{d-1}^{j(0)}, v_{d-1}^{j(0)}\right]\right)+2$ where $l\left(P_{12 \ldots(d-1)}\left[v_{d-1}, u_{d-1}\right]\right)=(d-1) \times d^{2}-1$ and $l\left(P_{0}\left[u_{d-1}^{j(0)}, v_{d-1}^{j(0)}\right]\right)=1,3, \cdots, d^{2}-1-2|F|$ ． Therefore，$C_{12 \cdots(d-1) 0}$ is an even cycle of length from $(d-1) \times d^{2}+2$ to $d^{3}-2|F|$ and contains the edge e ．

Similar to Lemma 4，we have
Theorem 2 Let $n \geqslant 3$ be an integer and $Q_{n}(d)$ （ $d \geqslant 2, d$ is an even number）has exactly one faulty vertex．Then，every fault－free edge of $Q_{n}(d)$ lies on a fault－free cycle of every even length from 4 to $d^{n}-2$ ．

Theorem 3 Let $n \geqslant 3$ be an integer．For any subset F of $V\left(Q_{n}(d)\right)(d \geqslant 2, d$ is an even number $)$ with $|F|=f_{v} \leqslant n-2$ ，every edge of $Q_{n}(d)-F$ lies on a cycle of every even length from 4 to $d^{n}-2 f_{v}$ ．

Proof We prove this theorem by induction on n ．By Lemma 4，Theorem 3 holds for $n=3$ ．Assum－ ing that the theorem is true for every integer $k(3 \leqslant$ $k \leqslant n)$ ．Let F be a subset of $V\left(Q_{k+1}(d)\right)$ and $|F|=$ f_{v} ．By Corollary 1 and Theorem 2，Theorem 3 holds for $f_{v} \leqslant 1$ ．Thus，we only consider the case of $2 \leqslant$ $f_{v} \leqslant n-2$ ．

Let w and z be two distinct faulty vertices．By Lemma $1, Q_{k+1}(d)$ can be partitioned along dimen－ sion $j\left(j \in\{1,2, \cdots, k+1\}\right.$ into d copies $Q_{k}(d)$ ，de－ noted by $Q_{k}^{i}(d)(i=0,1,2, \cdots, d-1), w \in Q_{k}^{l}(d)$ ， $z \in Q_{k}^{m}(d)(l, m \in\{0,1,2, \cdots, d-1\}, l \neq m)$ ．Let $f_{i}=\left|F \cap V\left(Q_{k}^{i}(d)\right)\right| . i=0,1,2, \cdots, d-1, i . e .$, $f_{v}=\sum_{i=0}^{d-1} f_{i}$ ．Therefore，$f_{i} \leqslant k-2, i=0,1,2, \cdots, d-$

1．Let $e=(u, v)$ be a fault－free edge of $Q_{k+1}(d)-$ F ．In order to prove this theorem，we establish every even l－cycle containing e where $4 \leqslant l \leqslant d^{k+1}-2 f_{v}$ ．

Case 1：$e \in E\left(Q_{k}^{0}(d)\right) \cup E\left(Q_{k}^{1}(d)\right) \cup \cdots \cup E$ $\left(Q_{k}^{d-1}(d)\right), i . e ., e$ lies on $Q_{k}^{i}(d)(i=0,1,2, \cdots$, $d-1)$ ．We only consider that $e \in E\left(Q_{k}^{0}(d)\right)(e \notin E$ （ $\left.Q_{k}^{0}(d)\right)$ is similar）．

Since $f_{0} \leqslant k-2$ ，by induction hypothesis，there is a fault－free even l_{0}－cycle in $Q_{k}^{0}(d)$ containing the edge e where $4 \leqslant l_{0} \leqslant d^{k}-2 f_{0}$ ．Thus，the cycle of every even length from 4 to $d^{k}-2 f_{0}$ containing the edge e in $Q_{k+1}(d)$ can be found in $Q_{k}^{0}(d)$ ．Let $C_{l_{0}^{*}}$ be a fault－free even l_{0}^{*}－cycle containing the edge e in $Q_{k}^{0}(d)$ where $l_{0}^{*}=d^{k}-2 f_{0}$ ．One can observe that there are at least $\frac{1}{2} \times d^{k}-f_{0}-1$ disjoint edges such that each of them differs with e in the cycle $C_{L_{0}^{*}}$ ． Since $k \geqslant 3$ and $\sum_{i=0}^{k+1} f_{i} \leqslant k-1, \frac{1}{2} \times d^{k}-f_{0}-1>$ $\sum_{i=1}^{k+1} f_{i}$ ．Therefore，$C_{l_{0}^{*}}$ has an edge $\left(u_{0}, v_{0}\right)$ ， $\left(u_{0}, v_{0}\right) \neq e, u_{0}^{j(m)}$ is a fault－free vertex in $Q_{k}^{m}(d)$, $v_{0}^{j(m)}$ is a fault－free vertex in $Q_{k}^{m}(d)(m \in\{1,2, \cdots$, $d-1\}, h\left(u_{0}, u_{0}^{j(m)}\right)=1, h\left(v_{0}, v_{0}^{j(m)}\right)=1$ ．We may assume that $m=1(m \neq 1$ is similar $), i . e ., u_{0}^{j(1)}$ is a fault－free vertex in $Q_{k}^{1}(d), v_{0}^{j(1)}$ is a fault－free vertex in $Q_{k}^{1}(d)$ ．The cycle $C_{\iota_{0}^{*}}$ can be represented as（ u_{0} ， $\left.v_{0}, P_{0}\left[v_{0}, u_{0}\right], u_{0}\right)$ where e lies on the path $P_{0}\left[v_{0}\right.$, $\left.u_{0}\right]$ ．

Since $f_{1} \leqslant k-2$ ，by induction hypothesis，there are even cycles with lengths from 4 to $d^{k}-2 f_{1}$ in $Q_{k}^{1}(d)$ that each cycle contains the edge $\left(u_{0}^{j(1)}\right.$ ， $\left.v_{0}^{j(1)}\right)$ ，Let $C_{l_{1}}=\left(v_{0}^{j(1)}, u_{0}^{j(1)}, P_{1}\left[u_{0}^{j(1)}, v_{0}^{j(1)}\right], v_{0}^{j(1)}\right)$ be an even l_{1}－cycle containing the edge $\left(u_{0}^{j(1)}, v_{0}^{j(1)}\right)$ in $Q_{k}^{1}(d)$ where $4 \leqslant l_{1} \leqslant d^{k}-2 f_{1}$ ．Merging the two cycles $C_{i_{0}^{*}}$ and $C_{l_{1}}$ as well as the two edges（ u_{0} ， $\left.u_{0}^{j(1)}\right)$ and $\left(v_{0}, v_{0}^{j(1)}\right)$ ，we can construct a fault－free even cycle $C_{01}=\left(v_{0}, P_{0}\left[v_{0}, u_{0}\right], u_{0}, u_{0}^{j(1)}, P_{1}\left[u_{0}^{j(1)}\right.\right.$ ， $\left.\left.v_{0}^{j(1)}\right], v_{0}^{j(1)}, v_{0}\right)$ which contains e ．Obviously， $l\left(C_{01}\right)=l\left(P_{0}\left[v_{0}, u_{0}\right]\right)+l\left(P_{1}\left[u_{0}^{j(1)}, v_{0}^{j(1)}\right]\right)+2$ where $l\left(C_{01}\right)=d^{k}-2 f_{0}-1$ ，and $l\left(P_{1}\left[u_{0}^{j(1)}\right.\right.$ ， $\left.\left.v_{0}^{j(1)}\right]\right)=1,3, \cdots, d^{k}-2 f_{1}-1$ ．Therefore，the cycle
C_{01} is of length from $d^{k}-2 f_{0}+2$ to $2 \times d^{k}-2\left(f_{0}+\right.$ f_{1} ）and contains the edge e ．

Let $C_{012 \cdots i}^{*}(i=1,2, \cdots, d-2)$ be a fault－free e－ ven $\left((i+1) \times d^{k}-2 \sum_{a=0}^{i} f_{a}\right)$－cycle containing the edge e ．One can observe that there are at least $\frac{1}{2} \times$ $(i+1) d^{k}-\sum_{a=0}^{i} f_{a}-1$ disjoint edges such that each of them differs with e in the cycle $C_{012 \ldots i}^{*}$ ．Since $k \geqslant 3$ and $\sum_{a=0}^{k+1} f_{a} \leqslant k-1, \frac{1}{2} \times(i+1) d^{k}-\sum_{a=0}^{i} f_{a}-i>$ $\sum_{a=i+1}^{k+1} f_{a}$ ．Therefore，$C_{012 \cdots i}^{*}$ has an edge $\left(u_{i}, v_{i}\right)$ ， $\left(u_{i}, v_{i}\right) \in\left\{e,\left(u_{1}, v_{1}\right), \cdots,\left(u_{i-1}, v_{i-1}\right)\right\}, u_{i}^{j(m)}$ is a fault－free vertex in $Q_{k}^{m}(d), v_{i}^{j(m)}$ is a fault－free ver－ tex in $Q_{k}^{m}(d)(m \in\{i+1, i+2, \cdots, d-1\}), h\left(u_{i}\right.$, $\left.u_{i}^{j(m)}\right)=1, h\left(v_{i}, v_{i}^{j(m)}\right)=1$ ．We may assume that $m=i+1(m \neq i+1$ is similar $), i . e ., u_{i}^{j(i+1)}$ is a fault－free vertex in $Q_{k}^{k+1}(d), v_{i}^{j(i+1)}$ is a fault－free vertex in $Q_{k}^{k+1}(d)$ ．The cycle $C_{012 \ldots i}^{*}$ can be represen－ ted as $\left(u_{i}, v_{i}, P_{012 \cdots i}\left[v_{i}, u_{i}\right], u_{i}\right)$ where e lies on the path $P_{012 \ldots i}\left[v_{i}, u_{i}\right]$ ．

Since $f_{i+1} \leqslant k-2$ ，by induction hypothesis， there are even cycles with lengths from 4 to $d^{k}-$ $2 f_{i+1}$ in $Q_{k}^{i+1}(d)$ that each cycle contains the edge $\left(u_{i}^{j(i+1)}, v_{i}^{j(i+1)}\right)$ ．Let $C_{l_{i+1}}=\left(v_{i}^{j(i+1)}, u_{i}^{j(i+1)}, P_{i+1}\right.$ $\left.\left[u_{i}^{j(i+1)}, v_{i}^{j(i+1)}\right], v_{i}^{j(i+1)}\right)$ be an even l_{i+1}－cycle con－ taining the edge $\left(u_{i}^{j(i+1)}, v_{i}^{j(i+1)}\right)$ in $Q_{k}^{i+1}(d)$ where $4 \leqslant l_{i+1} \leqslant d^{k}-2 f_{i+1}$ ．Merging the two cycles $C_{012 \cdots i}^{*}$ and $C_{l_{i+1}}$ as well as the two edges（ $u_{i}, u_{i}^{j(i+1)}$ ）and （ $v_{i}, v_{i}^{j(i+1)}$ ），we can construct a fault－free even cycle $C_{01 \cdots i(i+1)}=\left(v_{i}, P_{01 \cdots i}\left[v_{i}, u_{i}\right], u_{i}, u_{i}^{j(i+1)}\right.$ ， $\left.P_{i+1}\left[u_{i}^{j(i+1)}, v_{i}^{j(i+1)}\right], v_{i}^{j(i+1)}, v_{i}\right)$ which contains e. Obviously，$l\left(C_{01 \cdots i(i+1)}\right)=l\left(P_{01 \cdots i}\left[v_{i}, u_{i}\right]\right)+l\left(P_{i+1}\right.$ $\left.\left[u_{i}^{j(i+1)}, v_{i}^{j(i+1)}\right]\right)+2$ where $l\left(P_{01 \ldots i}\left[v_{i}, u_{i}\right]\right)=(i+$ 1）$\times d^{k}-2 \sum_{a=0}^{i} f_{a}-1$ ，and $l\left(P_{i+1}\left[u_{i}^{j(i+1)}, v_{i}^{j(i+1)}\right]\right)=$ $1,3, \cdots, d^{k}-2 f_{i+1}-1$ ．Therefore，the cycle $C_{01 \cdots i(i+1)}$ is of length from $(i+1) \times d^{k}-2 \sum_{a=0}^{i} f_{a}+2$ to $(i+2) \times d^{k}-2 \sum_{a=0}^{i+1} f_{a}$ and contains the edge e ．

Case $2: e \notin E\left(Q_{k}^{0}(d)\right) \cup E\left(Q_{k}^{1}(d)\right) \cup \cdots \cup E$ $\left(Q_{k}^{d-1}(d)\right), i . e ., u \in Q_{k}^{l}(d)(l \in\{0,1, \cdots, d-1\})$ ，

广西科学，2021年，28卷，第4期 Guangxi Sciences，2021，Vol． 28 No． 4

$v \in Q_{k}^{m}(d)(m \in\{0,1, \cdots, d-1\}), l \neq m, e$ is an edge of dimension j and $v=u^{j(a)}(j \in\{1,2, \cdots, k+1\}$ ， $a \in\{0,1, \cdots, d-1\}$ ）．

We assume that $u \in Q_{k}^{0}(d)$ and $v \in Q_{k}^{1}(d)$（If $u \notin Q_{k}^{0}(d)$ or $v \notin Q_{k}^{1}(d)$ is similar $)$ ．Since $f_{v} \leqslant(k+$ 1）$-2=k-1$ ，there is an integer $i(i \in\{1,2, \cdots, k+$ $1\}), i \neq j$ ，such that $u^{i(a)}$ and $v^{i(a)}(a \in\{0,1, \cdots, d-$ 1\}) are fault-free. Thus, $\left(u, u^{i(a)}, v^{i(a)}, v, u\right)$ is a fault－free 4 －cycle containing the edge e ．Noting that u and $u^{i(a)}$（respectively，v and $v^{i(a)}$ ）are adjacent in $Q_{k}^{0}(d)$（respectively，$\left.Q_{k}^{1}(d)\right)$ ．Since $f_{0} \leqslant k-2$ and $f_{1} \leqslant k-2$ ，by induction hypothesis，there is an even l_{0}－cycle in $Q_{k}^{0}(d)$ containing the edge $\left(u, u^{i(a)}\right)$ such as $C_{l_{0}}=\left(u, u^{i(a)}, P_{0}\left[u^{i(a)}, u\right], u\right)$ and there is an even l_{1}－cycle in $Q_{k}^{1}(d)$ containing the edge（ v ， $\left.v^{i(a)}\right)$ such as $C_{l_{1}}=\left(v^{i(a)}, v, P_{1}\left[v, v^{i(a)}\right], v^{i(a)}\right)$ where $4 \leqslant l_{0} \leqslant d^{k}-2 f_{0}$ and $4 \leqslant l_{1} \leqslant d^{k}-2 f_{1}$ ．Com－ bining the 4 －cycle $\left(u, u^{i(a)}, v^{i(a)}, v, u\right)$ and a 4 －cycle containing $\left(u, u^{i(a)}\right)$ in $Q_{k}^{0}(d)$ ，the desired 6－cycle can be obtained．Merging the two cycles $C_{l_{0}}$ and $C_{l_{1}}$ as well as the two edges (u, v) and $\left(u^{i(a)}, v^{i(a)}\right)$ ，we can construct a fault－free even cycle $C_{01}=\left(u, v, P_{1}\right.$ $\left.\left[v, v^{i(a)}\right], v^{i(a)}, u^{i(a)}, P_{0}\left[u^{i(a)}, u\right], u\right)$ which con－ tains e ．Obviously，$l\left(C_{01}\right)=l\left(P_{1}\left[v, v^{i(a)}\right]\right)+l\left(P_{0}\right.$ $\left.\left[u^{i(a)}, u\right]\right)+2$ where $l\left(P_{0}\left[u^{i(a)}, u\right]\right)=3,5, \cdots, d^{k}-$ $2 f_{0}-1$ and $l\left(P_{1}\left[v, v^{i(a)}\right]\right)=3,5, \cdots, d^{k}-2 f_{1}-1$ ． This implies that $8 \leqslant l\left(C_{01}\right) \leqslant 2 \times d^{k}-2\left(f_{0}+f_{1}\right)$ ， $l\left(C_{01}\right)$ is even and C_{01} contains the edge e.

Let $C_{012 \cdots i}^{*}(i=1,2, \cdots, d-2)$ be a fault－free e^{-} ven $\left((i+1) \times d^{k}-2 \sum_{a=0}^{i} f_{a}\right)$－cycle containing the edge e ．Similar to Case 1 ，we can construct a fault－ free even cycle $C_{01 \cdots i(i+1)}=\left(v_{i}, P_{01 \cdots i}\left[v_{i}, u_{i}\right], u_{i}\right.$ ， $\left.u_{i}^{j(i+1)}, P_{i+1}\left[u_{i}^{j(i+1)}, v_{i}^{j(i+1)}\right], v_{i}^{j(i+1)}, v_{i}\right)$ which con－ tains e ．The cycle $C_{01 \cdots i(i+1)}$ is of length from $(i+1) \times d^{k}-2 \sum_{a=0}^{i} f_{a}+2$ to $(i+2) \times d^{k}-2 \sum_{a=0}^{i} f_{a}$ and contains the edge e ．

Since $|F| \leqslant n-2$ and the degree of any vertex of $Q_{n}(d)$ is $n(d-1)$ ，any fault－free vertex of $Q_{n}(d)$ has at least $n(d-2)+2$ fault－free neigh－ bors．Thus，every fault－free vertex can be incident by a fault－free edge．Therefore，we have

Corollary 3 Let $n \geqslant 3$ be an integer．For any subset F of $V\left(Q_{n}(d)\right)(d \geqslant 2, d$ is an even number $)$ with $|F| \leqslant n-2$ ，every vertex of $Q_{n}(d)-F$ lies on a fault－free cycle of every even length from 4 to $d^{n}-2|F|$ ．

Applying Theorem 3．If $d=2$ ，we have
Corollary $4^{[2]}$ Assuming that $n \geqslant 3$ ．For any subset F of $V\left(Q_{n}(d)\right)$ with $|F|=f_{v} \leqslant n-2$ ，every edge of $Q_{n}(d)-F$ lies on a cycle of every even length from 4 to $2^{n}-2 f_{v}$ ．

Applying Corollary 4．We have
Corollary $5^{[2]}$ Let $n \geqslant 3$ be an integer．For any subset F of $V\left(Q_{n}(d)\right)$ with $|F| \leqslant n-2$ ，every ver－ tex of $Q_{n}-F$ lies on a fault－free cycle of every even length from 4 to $2^{n}-2|F|$ ．

$3 \boldsymbol{d}$ is an odd number

Theorem 4 Let x and y be any two vertices in $Q_{n}(d)(n \geqslant 2)$ and l be any integer with $D\left(Q_{n}(d)\right.$ ； $x, y) \leqslant l \leqslant d^{n}-1$ ．If d is an odd number，$l-D\left(Q_{n}\right.$ $(d) ; x, y)$ is an even number，then there is an $x y^{-}$ path of length l in $Q_{n}(d)$ ．Moreover，if $D\left(Q_{n}(d)\right.$ ； $x, y)=1$ ，there is an $x y$－path of length $l=d^{n}-1$ in $Q_{n}(d)$ ．

Proof Let $D\left(Q_{n}(d) ; x, y\right)=m$ ．The proof is based on the recursive structure of $Q_{n}(d)$ by induc－ tion on $n \geqslant 2$ ．

When $n=2$ ，if $D\left(Q_{n}(d) ; x, y\right)=1$ ．By the ver－ tex－transitivity of $Q_{2}(d)^{[3]}$ ，without loss of general－ ity，we can assume $x=00, y=01$ ．
$x=00 \rightarrow 01=y, x=00 \rightarrow 02 \rightarrow 03 \rightarrow 01=y, x=$ $00 \rightarrow 02 \rightarrow 03 \rightarrow 04 \rightarrow 05 \rightarrow 01=y, \cdots, x=00 \rightarrow 02 \rightarrow 03 \rightarrow$ $04 \rightarrow 05 \rightarrow \cdots \rightarrow 0(d-3) \rightarrow 0(d-2) \rightarrow 01=y$ are the $x y$－path of length $l=1,3,5, \cdots, d-2$ in $Q_{2}(d)$ ．
$x=00 \rightarrow 10 \rightarrow 12 \rightarrow 02 \rightarrow 03 \rightarrow 04 \rightarrow 05 \rightarrow \cdots \rightarrow 0(d-$ $3) \rightarrow 0(d-2) \rightarrow 01=y, x=00 \rightarrow 10 \rightarrow 20 \rightarrow 22 \rightarrow 12 \rightarrow$ $02 \rightarrow 03 \rightarrow 04 \rightarrow 05 \rightarrow \cdots \rightarrow 0(d-3) \rightarrow 0(d-2) \rightarrow 01=$ y, \cdots ．
$x=00 \rightarrow 10 \rightarrow 20 \rightarrow 30 \rightarrow 40 \rightarrow \cdots \rightarrow(d-2) 0 \rightarrow(d-$ 1） $0 \rightarrow(d-1) 2 \rightarrow(d-2) 2 \rightarrow \cdots \rightarrow 22 \rightarrow 12 \rightarrow 02 \rightarrow 03 \rightarrow$ $13 \rightarrow 23 \rightarrow \cdots \rightarrow(d-2) 3 \rightarrow(d-1) 3 \rightarrow(d-1) 4 \rightarrow(d-$ 2） $4 \rightarrow \cdots \rightarrow 24 \rightarrow 14 \rightarrow 04 \rightarrow \cdots \rightarrow 0(d-4) \rightarrow 1(d-4) \rightarrow 2$ $(d-4) \rightarrow \cdots \rightarrow(d-2)(d-4) \rightarrow(d-1)(d-4) \rightarrow$
$(d-1)(d-3) \rightarrow(d-2)(d-3) \rightarrow \cdots \rightarrow 2(d-3) \rightarrow 1$ $(d-3) \rightarrow 0(d-3) \rightarrow 0(d-2) \rightarrow 1(d-2) \rightarrow 2(d-$ $2) \rightarrow \cdots \rightarrow(d-2)(d-2) \rightarrow(d-1)(d-2) \rightarrow(d-1)$ $1 \rightarrow(d-2) 1 \rightarrow \cdots \rightarrow 21 \rightarrow 11 \rightarrow 01=y, \cdots$ ．
$x=00 \rightarrow 10 \rightarrow 20 \rightarrow 30 \rightarrow 40 \rightarrow \cdots \rightarrow(d-2) 0 \rightarrow(d-$ 1） $0 \rightarrow(d-1) 2 \rightarrow(d-2) 2 \rightarrow \cdots \rightarrow 22 \rightarrow 12 \rightarrow 02 \rightarrow 03 \rightarrow$ $13 \rightarrow 23 \rightarrow \cdots \rightarrow(d-2) 3 \rightarrow(d-1) 3 \rightarrow(d-1) 4 \rightarrow(d-$ 2） $4 \rightarrow \cdots \rightarrow 24 \rightarrow 14 \rightarrow 04 \rightarrow \cdots \rightarrow 0(d-4) \rightarrow 1(d-4) \rightarrow$ $2(d-4) \rightarrow \cdots \rightarrow(d-2)(d-4) \rightarrow(d-1)(d-4) \rightarrow$ $(d-1)(d-3) \rightarrow(d-2)(d-3) \rightarrow \cdots \rightarrow 2(d-3) \rightarrow$ $1(d-3) \rightarrow 0(d-3) \rightarrow 0(d-2) \rightarrow 1(d-2) \rightarrow 2(d-$ $2) \rightarrow \cdots \rightarrow(d-2)(d-2) \rightarrow(d-1)(d-2) \rightarrow(d-1)$ $1 \rightarrow(d-1)(d-1) \rightarrow(d-2)(d-1) \rightarrow(d-2) 1 \rightarrow$ $(d-3) 1 \rightarrow(d-3)(d-1) \rightarrow(d-4)(d-1) \rightarrow(d-$ 4） $1 \rightarrow \cdots \rightarrow 21 \rightarrow 2(d-1) \rightarrow 1(d-1) \rightarrow 11 \rightarrow 01=y$ are the $x y$－path of length $l=d, d+2, \cdots, d^{2}-$ $d-1, \cdots, d^{2}-2$ in $Q_{2}(d)$ ．
$x=00 \rightarrow 10 \rightarrow 20 \rightarrow 30 \rightarrow 40 \rightarrow \cdots \rightarrow(d-2) 0 \rightarrow(d-$ 1） $0 \rightarrow(d-1) 2 \rightarrow(d-2) 2 \rightarrow \cdots \rightarrow 22 \rightarrow 12 \rightarrow 02 \rightarrow 03 \rightarrow$ $13 \rightarrow 23 \rightarrow \cdots \rightarrow(d-2) 3 \rightarrow(d-1) 3 \rightarrow(d-1) 4 \rightarrow(d-$ 2） $4 \rightarrow \cdots \rightarrow 24 \rightarrow 14 \rightarrow 04 \rightarrow \cdots \rightarrow 0(d-4) \rightarrow 1(d-4) \rightarrow$ $2(d-4) \rightarrow \cdots \rightarrow(d-2)(d-4) \rightarrow(d-1)(d-4) \rightarrow$ $(d-1)(d-3) \rightarrow(d-2)(d-3) \rightarrow \cdots \rightarrow 2(d-3) \rightarrow 1$ $(d-3) \rightarrow 0(d-3) \rightarrow 0(d-2) \rightarrow 1(d-2) \rightarrow 2(d-$ $2) \rightarrow \cdots \rightarrow(d-2)(d-2) \rightarrow(d-1)(d-2) \rightarrow(d-$ 1） $1 \rightarrow(d-1)(d-1) \rightarrow(d-2)(d-1) \rightarrow(d-2) 1 \rightarrow$ $(d-3) 1 \rightarrow(d-3)(d-1) \rightarrow(d-4)(d-1) \rightarrow(d-$ 4） $1 \rightarrow \cdots \rightarrow 21 \rightarrow 2(d-1) \rightarrow 0(d-1) \rightarrow 1(d-1) \rightarrow 11 \rightarrow$ $01=y$ is the $x y$－path of length $l=d^{2}-1$ in $Q_{2}(d)$ ．

The rest of the inductive proof are similar to Theorem 1.

Applying Theorem 4，we have
Corollary 6 For any $n \geqslant 2$ ，every edge of $Q_{n}(d)(d \geqslant 3, d$ is an odd number）lies on a cycle of every even length from 4 to $d^{n}-1$ ．Moreover，every edge of $Q_{n}(d)$ lies on a cycle of length d^{n} ．

Similar to Lemma 3．We have
Lemma 5 For any subset F of $V\left(Q_{2}(d)\right)(d \geqslant$ $3, d$ is an odd number）with $|F| \leqslant 1$ ，every edge of $Q_{2}(d)-F$ lies on a fault－free k－cycle，$k=4,6, \cdots$, $d^{2}-2|F|-1$ ．Moreover，every edge of $Q_{2}(d)-F$ lies on a fault－free $\left(d^{2}-2|F|\right)$－cycle．

Similar to Lemma 4，applying Theorem 4 and Lemma 5．We have

Lemma 6 For any subset F of $V\left(Q_{3}(d)\right)(d \geqslant$
$3, d$ is an odd number）with $|F| \leqslant 1$ ，every edge of $Q_{3}(d)-F$ lies on a fault－free k－cycle，$k=4,6, \cdots$, $d^{3}-2|F|-1$ ．Moreover，every edge of $Q_{3}(d)-F$ lies on a fault－free $\left(d^{3}-2|F|\right)$－cycle．

Similar to Lemma 6，we have
Theorem 5 Let $n \geqslant 3$ be an integer and $Q_{n}(d)$ （ $d \geqslant 3, d$ is an odd number）has exactly one faulty vertex．Then，every fault－free edge of $Q_{n}(d)$ lies on a fault－free cycle of every even length from 4 to $d^{n}-3$ ．Moreover，every fault－free edge of $Q_{n}(d)$ lies on a fault－free cycle of length $d^{n}-2$ ．

Theorem 6 Let $n \geqslant 3$ be an integer．For any subset F of $V\left(Q_{n}(d)\right)(d \geqslant 3, d$ is an odd number $)$ with $|F|=f_{v} \leqslant n-2$ ，every edge of $Q_{n}(d)-F$ lies on a cycle of every even length from 4 to $d^{n}-2 f_{v}-$ 1．Moreover，every edge of $Q_{n}(d)-F$ lies on a cycle of length $d^{n}-2 f_{v}$ ．

Proof We prove this theorem by induction on n ．By Lemma 6，Theorem 6 holds for $n=3$ ．Assum－ ing that the theorem is true for every integer $k(3 \leqslant$ $k \leqslant n)$ ．Let F be a subset of $V\left(Q_{k+1}(d)\right)$ and $|F|=$ f_{v} ．By Corollary 6 and Theorem 5，Theorem 6 holds for $f_{v} \leqslant 1$ ．Thus，we only consider the case of $2 \leqslant$ $f_{v} \leqslant n-2$ ．

Let w and z be two distinct faulty vertices．By Lemma $1, Q_{k+1}(d)$ can be partitioned along dimen－ sion $j(j \in\{1,2, \cdots, k+1\})$ into d copies $Q_{k}(d)$ ，de－ noted by $Q_{k}^{i}(d)(i=0,1, \cdots, d-1), w \in Q_{k}^{l}(d), z \in$ $Q_{k}^{m}(d)(l, m \in\{0,1,2, \cdots, d-1\}, l \neq m)$ ．Let $f_{i}=$ $\left|F \cap V\left(Q_{k}^{i}(d)\right)\right|, i=0,1,2, \cdots d-1, i . e ., f_{v}=$ $\sum_{i=0}^{d-1} f_{i}$ ．Therefore，$f_{i} \leqslant k-2, i=0,1,2, \cdots, d-1$ ．Let $e=(u, v)$ be a fault－free edge of $Q_{k+1}(d)-F$ ．In order to prove this theorem，we establish every even l－cycle containing e where $4 \leqslant l \leqslant d^{k+1}-2 f_{v}-1$ ， and a（ $d^{k+1}-2 f_{v}$ ）－cycle containing e ．

Case 1：$e \in E\left(Q_{k}^{0}(d)\right) \cup E\left(Q_{k}^{1}(d)\right) \cup \cdots \cup$ $E\left(Q_{k}^{d-1}(d)\right), i . e ., e$ lies on $Q_{k}^{i}(d)(i \in\{0,1,2, \cdots$, $d-1\})$ ．We only consider that $e \in E\left(Q_{k}^{0}(d)\right)(e \notin$ $E\left(Q_{k}^{0}(d)\right)$ is similar）．

Since $f_{0} \leqslant k-2$ ，by induction hypothesis，there is a fault－free even l_{0}－cycle in $Q_{k}^{0}(d)$ containing the edge e where $4 \leqslant l_{0} \leqslant d^{k}-2 f_{0}-1$ ，and there exists a

广西科学，2021年，28卷，第4期 Guangxi Sciences，2021，Vol． 28 No． 4

fault－free（ $d^{k}-2 f_{0}$ ）－cycle in $Q_{k}^{0}(d)$ containing the edge e ．Thus，the cycle of every even length from 4 to $d^{k}-2 f_{0}-1$ containing the edge e in $Q_{k+1}(d)$ can be found in $Q_{k}^{0}(d)$ ．Let $C_{i_{0}^{*}}\left(C_{L_{0}^{* *}}\right)$ be a fault－free e^{-} ven l_{0}^{*}－cycle（ $l_{0}^{*^{\prime}}$－cycle）containing the edge e in Q_{k}^{0} （d）where $l_{0}^{*}=d^{k}-2 f_{0}-1\left(l_{0}^{* \prime}=d^{k}-2 f_{0}\right)$ ．One can observe that there are at least $\frac{1}{2} \times\left(d^{k}-1\right)-$ $f_{0}-1$ disjoint edges such that each of them differs with e in the cycle $C_{l_{0}^{*}}\left(C_{l_{0}^{*}}\right)$ ．Since $k \geqslant 3$ and $\sum_{i=0}^{k+1} f_{i} \leqslant k-1, \frac{1}{2} \times\left(d^{k}-1\right)-f_{0}-1>\sum_{i=1}^{k+1} f_{i}$ ．There－ fore，$C_{l_{0}^{*}}\left(C_{l_{0}^{*^{\prime}}}\right)$ has an edge $\left(u_{0}, v_{0}\right),\left(u_{0}, v_{0}\right) \neq e$ ， $u_{0}^{j(m)}$ is a fault－free vertex in $Q_{k}^{m}(d), v_{0}^{j(m)}$ is a fault－ free vertex in $Q_{k}^{m}(d)\left(m \in\{1,2, \cdots, d-1), h\left(u_{0}\right.\right.$, $\left.u_{0}^{j(m)}\right)=1, h\left(v_{0}, v_{0}^{j(m)}\right)=1$ ．We may assume that $m=1(m \neq 1$ is similar $), i . e ., u_{0}^{j(1)}$ is a fault－free vertex in $Q_{k}^{1}(d), v_{0}^{j(1)}$ is a fault－free vertex in Q_{k}^{1} （d）．The cycle $C_{i_{0}^{* *}}\left(C_{l_{0}^{*^{\prime}}}\right)$ can be represented as $\left(u_{0}, v_{0}, P_{0}\left[v_{0}, u_{0}\right], u_{0}\right)$ where e lies on the path P_{0} $\left[v_{0}, u_{0}\right]$ ．

Since $f_{1} \leqslant k-2$ ，by induction hypothesis，there are even cycles with lengths from 4 to $d^{k}-2 f_{1}-1$ in $Q_{k}^{1}(d)$ that each cycle contains the edge（ $u_{0}^{j(1)}$ ， $\left.v_{0}^{j(1)}\right)$ ，and there is a cycle of length $d^{k}-2 f_{1}$ in Q_{k}^{1} （d）that the cycle contains the edge $\left(u_{0}^{j(1)}, v_{0}^{j(1)}\right)$ ． Let $C_{l_{1}}=\left(v_{0}^{j(1)}, u_{0}^{j(1)}, P_{1}\left[u_{0}^{j(1)}, v_{0}^{j(1)}\right], v_{0}^{j(1)}\right)$ be an e－ ven l_{1}－cycle containing the edge $\left(u_{0}^{j(1)}, v_{0}^{j(1)}\right)$ in Q_{k}^{1} （d）where $4 \leqslant l_{1} \leqslant d^{k}-2 f_{1}-1, C_{i_{1}^{\prime}}=\left(v_{0}^{j(1)}, u_{0}^{j(1)}\right.$ ， $\left.P_{1}\left[u_{0}^{j(1)}, v_{0}^{j(1)}\right], v_{0}^{j(1)}\right)$ be a $\left(d^{k}-2 f_{1}\right)$－cycle contai－ ning the edge $\left(u_{0}^{j(1)}, v_{0}^{j(1)}\right)$ in $Q_{k}^{1}(d)$ ．Merging the two cycles $C_{l_{0}^{*}}$ and $C_{l_{1}}$ as well as the two edges （ $u_{0}, u_{0}^{j(1)}$ ）and $\left(v_{0}, v_{0}^{j(1)}\right)$ ，we can construct a fault－ free even cycle $C_{01}=\left(v_{0}, P_{0}\left[v_{0}, u_{0}\right], u_{0}, u_{0}^{j(1)}\right.$ ， $\left.P_{1}\left[u_{0}^{j(1)}, v_{0}^{j(1)}\right], v_{0}^{j(1)}, v_{0}\right)$ which contains e ．Obvi－ ously，$l\left(C_{01}\right)=l\left(P_{0}\left[v_{0}, u_{0}\right]\right)+l\left(P_{1}\left[u_{0}^{j(1)}\right.\right.$, $\left.\left.v_{0}^{j(1)}\right]\right)+2$ where $l\left(P_{0}\left[v_{0}, u_{0}\right]\right)=d^{k}-2 f_{0}-2$ ，and $l\left(P_{1}\left[u_{0}^{j(1)}, v_{0}^{j(1)}\right]\right)=1,3, \cdots, d^{k}-2 f_{1}-1$ ．There－ fore，the cycle C_{01} is of length from $d^{k}-2 f_{0}+1$ to 2 $\times d^{k}-2\left(f_{0}+f_{1}\right)-2$ and contains the edge e ．Mer－ ging the two cycles $C_{l_{0}^{*+}}$ and $C_{i_{1}^{\prime}}$ as well as the two
edges $\left(u_{0}, u_{0}^{j(1)}\right)$ and $\left(v_{0}, v_{0}^{j(1)}\right)$ ，we can construct a fault－free even cycle $C_{01}^{\prime}=\left(v_{0}, P_{0}\left[v_{0}, u_{0}\right], u_{0}, u_{0}^{j(1)}\right.$ ， $\left.P_{1}\left[u_{0}^{j(1)}, v_{0}^{j(1)}\right], v_{0}^{j(1)}, v_{0}\right)$ which contains e ．Obvi－ ously，$l\left(C_{01}^{\prime}\right)=l\left(P_{0}\left[v_{0}, u_{0}\right]\right)+l\left(P_{1}\left[u_{0}^{j(1)}\right.\right.$, $\left.\left.v_{0}^{j(1)}\right]\right)+2$ where $l\left(P_{0}\left[v_{0}, u_{0}\right]\right)=d^{k}-2 f_{0}-1$ and l $\left(P_{1}\left[u_{0}^{j(1)}, v_{0}^{j(1)}\right]\right)=d^{k}-2 f_{1}-1$ ．Therefore，the cy－ cle C_{01}^{\prime} is $\left(2 \times d^{k}-2\left(f_{0}+f_{1}\right)\right)$－cycle and contains the edge e ．

Let $C_{012, \cdots i}^{*}(i=1,3, \cdots, d-4, d-2)$ be a fault－ free even $\left((i+1) \times d^{k}-2 \sum_{a=0}^{i} f_{a}\right)$－cycle containing the edge e ．One can observe that there are at least $\frac{1}{2} \times(i+1) d^{k}-\sum_{a=0}^{i} f_{a}-1$ disjoint edges such that each of them differs with e in the cycle $C_{012, \ldots i}^{*}$ ．Since $k \geqslant 3$ and $\sum_{a=0}^{k+1} f_{a} \leqslant k-1, \frac{1}{2} \times(i+1) d^{k}-\sum_{a=0}^{i} f_{a}-1>$ $\sum_{a=i+1}^{k+1} f_{a}$ ．Therefore，$C_{012, \ldots i}^{*}$ has an edge $\left(u_{i}, v_{i}\right),\left(u_{i}\right.$, $\left.v_{i}\right) \notin\left\{e,\left(u_{1}, v_{1}\right), \cdots,\left(u_{i-1}, v_{i-1}\right)\right\}, u_{i}^{j(m)}$ is a fault ${ }^{-}$ free vertex in $Q_{k}^{m}(d), v_{i}^{j(m)}$ is a fault－free vertex in $Q_{k}^{m}(d)(m \in\{i+1, i+2, \cdots, d-1\}), h\left(u_{i}, u_{i}^{j(m)}\right)=$ $1, h\left(v_{i}, v_{i}^{j(m)}\right)=1$ ．We may assume that $m=i+1$ （ $m \neq i+1$ is similar），$i . e ., u_{i}^{j(i+1)}$ is a fault－free ver－ tex in $Q_{k}^{i+1}(d), v_{i}^{j(i+1)}$ is a fault－free vertex in Q_{k}^{i+1} （d）．The cycle $C_{012, \ldots i}^{*}$ can be represented as（ u_{i}, v_{i} ， $\left.P_{012 \cdots i}\left[v_{i}, u_{i}\right], u_{i}\right)$ where e lies on the $P_{012 \ldots i}\left[v_{i}, u_{i}\right]$ ．

Since $f_{i+1} \leqslant k-2$ ，by induction hypothesis， there are even cycles with lengths from 4 to $d^{k}-$ $2 f_{i+1}-1$ in $Q_{k}^{i+1}(d)$ that each cycle contains the edge $\left(u_{i}^{j(i+1)}, v_{i}^{j(i+1)}\right)$ ，and there is a $\left(d^{k}-2 f_{i+11}\right)$－ cycle in $Q_{k}^{i+1}(d)$ that the cycle contains the edge $\left(u_{i}^{j(i+1)}, v_{i}^{j(i+1)}\right)$ ．Let $C_{l_{i+1}}=\left(v_{i}^{j(i+1)}, u_{i}^{j(i+1)}\right.$ ， $\left.P_{i+1}\left[u_{i}^{j(i+1)}, v_{i}^{j(i+1)}\right], v_{i}^{j(i+1)}\right)$ be an even l_{i+1}－cycle containing the edge $\left(u_{i}^{j(i+1)}, v_{i}^{j(i+1)}\right)$ in $Q_{k}^{i+1}(d)$ where $4 \leqslant l_{i+1} \leqslant d^{k}-2 f_{i+1}-1, C_{i_{i+1}^{\prime}}=\left(v_{i}^{j(i+1)}\right.$ ， $\left.u_{i}^{j(i+1)}, P_{i+1}\left[u_{i}^{j(i+1)}, v_{i}^{j(i+1)}\right], v_{i}^{j(i+1)}\right)$ be a $\left(d^{k}-\right.$ $2 f_{i+11}$ ）－cycle containing the edge $\left(u_{i}^{j(i+1)}, v_{i}^{j(i+1)}\right)$ in $Q_{k}^{i+1}(d)$ ．Merging the two cycles $C_{012, \ldots i}^{*}$ and $C_{l_{i+1}}$ as well as the two edges $\left(u_{i}, u_{i}^{j(i+1)}\right)$ and $\left(v_{i}, v_{i}^{j(i+1)}\right)$ ， we can construct a fault－free even cycle $C_{01 \cdots i(i+1)}=$ $\left(v_{i}, P_{01 \cdots i}\left[v_{i}, u_{i}\right], u_{i}, u_{i}^{j(i+1)}, P_{i+1}\left[u_{i}^{j(i+1)}, v_{i}^{j(i+1)}\right]\right.$ ，
$\left.v_{i}^{j(i+1)}, \quad v_{i}\right)$ which contains e ．Obviously， $l\left(C_{01 \cdots i(i+1)}\right)=l\left(P_{01 \cdots i}\left[v_{i}, u_{i}\right]\right)+l\left(P_{i+1}\left[u_{i}^{j(i+1)}\right.\right.$, $\left.v_{i}^{j(i+1)}\right]+2$ where $l\left(P_{01 \ldots i}\left[v_{i}, u_{i}\right]\right)=(i+1) \times d^{k}-2$ $\sum_{a=0}^{i} f_{a}-1$ ，and $l\left(P_{i+1}\left[u_{i}^{j(i+1)}, v_{i}^{j(i+1)}\right]\right)=1,3, \cdots$ ， $d^{k}-2 f_{i+1}-2$ ．Therefore，the cycle $C_{01 \cdots i(i+1)}$ is of length from $(i+1) \times d^{k}-2 \sum_{a=0}^{i} f_{a}+2$ to $(i+2) \times$ $d^{k}-2 \sum_{a=0}^{i} f_{a}-1$ and contains the edge e ．Merging the two cycles $C_{012, \cdots i}^{*}$ and $C_{i_{i+1}}$ as well as the two edges $\left(u_{i}, u_{i}^{j(i+1)}\right)$ and $\left(v_{i}, v_{i}^{j(i+1)}\right)$ ，we can construct a fault－free even cycle $C_{01 \cdots i(i+1)}^{\prime}=\left(v_{i}, P_{01 \cdots i}\left[v_{i}, u_{i}\right]\right.$ ， $\left.u_{i}, u_{i}^{j(i+1)}, P_{i+1}\left[u_{i}^{j(i+1)}, v_{i}^{j(i+1)}\right], v_{i}^{j(i+1)}, v_{i}\right)$ which contains e ．Obviously，
$l\left(C_{01 \cdots i(i+1)}^{\prime}\right)=l\left(P_{01 \cdots i}\left[v_{i}, u_{i}\right]\right)+l\left(P_{i+1}\left[u_{i}^{j(i+1)}\right.\right.$, $\left.\left.v_{i}^{j(i+1)}\right]\right)+2$ where $l\left(P_{01 \ldots i}\left[v_{i}, u_{i}\right]\right)=(i+1) \times d^{k}-$ $2 \sum_{a=0}^{i} f_{a}-1$ and $l\left(P_{i+1}\left[u_{i}^{j(i+1)}, v_{i}^{j(i+1)}\right]\right)=d^{k}-$ $2 f_{i+1}-1$ ．Therefore，the cycle $C_{01 \cdots i(i+1)}^{\prime}$ is $\left((i+2) \times d^{k}-2 \sum_{a=0}^{i} f_{a}\right)$－cycle and contains the edge e ．

Let $C_{012, \ldots i}^{*}(i=2,4, \cdots, d-5, d-3)$ be a fault－ free even $\left((i+1) \times d^{k}-2 \sum_{a=0}^{i} f_{a}-1\right)$－cycle contai－ ning the edge $e, C_{012, \ldots i}^{* \prime}$ be a fault－free $((i+1) \times$ $\left.d^{k}-2 \sum_{a=0}^{i} f_{a}\right)$－cycle containing the edge e ．One can observe that there are at least $\frac{1}{2} \times\left[(i+1) d^{k}-1\right]-$ $\sum_{a=0}^{i} f_{a}-1$ disjoint edges such that each of them dif－ fers with e in the cycle $C_{012, \ldots i}^{*}$ ．Since $k \geqslant 3$ and $\sum_{a=0}^{k+1} f_{a} \leqslant k-1, \frac{1}{2} \times\left[(i+1) d^{k}-1\right]-\sum_{a=0}^{i} f_{a}-i>$ $\sum_{a=i+1}^{k+1} f_{a}$ ．Therefore，$C_{012, \ldots i}^{*}\left(C_{012, \ldots i}^{* \prime}\right)$ has an edge $\left(u_{i}\right.$, $\left.v_{i}\right),\left(u_{i}, v_{i}\right) \notin\left\{e,\left(u_{1}, v_{1}\right), \cdots,\left(u_{i-1}, v_{i-1}\right)\right\}, u_{i}^{j(m)}$ is a fault－free vertex in $Q_{k}^{m}(d), v_{i}^{j(m)}$ is a fault－free ver－ tex in $Q_{k}^{m}(d)(m \in\{i+1, i+2, \cdots, d-1\}), h\left(u_{i}\right.$, $\left.u_{i}^{j(m)}\right)=1, h\left(v_{i}, v_{i}^{j(m)}\right)=1$ ．We may assume that $m=i+1(m \neq i+1$ is similar $)$ ，i．e．，$u_{i}^{j(i+1)}$ is a fault－free vertex in $Q_{k}^{i+1}(d), v_{i}^{j(i+1)}$ is a fault－free vertex in $Q_{k}^{i+1}(d)$ ．The cycle $C_{012, \ldots i}^{*}\left(C_{012, \ldots i}^{*}\right)$ can be represented as $\left(u_{i}, v_{i}, P_{012 \cdots i}\left[v_{i}, u_{i}\right], u_{i}\right)$ where e
lies on the $P_{012 \ldots i}\left[v_{i}, u_{i}\right]$ ．
Since $f_{i+1} \leqslant k-2$ ，by induction hypothesis， there are even cycles with lengths from 4 to $d^{k}-$ $2 f_{i+1}-1$ in $Q_{k}^{i+1}(d)$ that each cycle contains the edge $\left(u_{i}^{j(i+1)}, v_{i}^{j(i+1)}\right)$ ，and there is a $\left(d^{k}-2 f_{i+11}\right)$－ cycle in $Q_{k}^{i+1}(d)$ that the cycle contains the edge $\left(u_{i}^{j(i+1)}, v_{i}^{j(i+1)}\right)$ ．Let $C_{l_{i+1}}=\left(v_{i}^{j(i+1)}, u_{i}^{j(i+1)}, P_{i+1}\right.$ $\left.\left[u_{i}^{j(i+1)}, v_{i}^{j(i+1)}\right], v_{i}^{j(i+1)}\right)$ be an even l_{i+1}－cycle con－ taining the edge $\left(u_{i}^{j(i+1)}, v_{i}^{j(i+1)}\right)$ in $Q_{k}^{i+1}(d)$ where $4 \leqslant l_{i+1} \leqslant d^{k}-2 f_{i+1}-1, C_{l_{i+1}^{\prime}}=\left(v_{i}^{j(i+1)}, u_{i}^{j(i+1)}\right.$, $\left.P_{i+1}\left[u_{i}^{j(i+1)}, v_{i}^{j(i+1)}\right], v_{i}^{j(i+1)}\right)$ be a $\left(d^{k}-2 f_{i+1}\right)-c y-$ cle containing the edge $\left(u_{i}^{j(i+1)}, v_{i}^{j(i+1)}\right)$ in $Q_{k}^{i+1}(d)$ ． Merging the two cycles $C_{012}^{*}, \ldots i$ and $C_{l_{i+1}}$ as well as the two edges $\left(u_{i}, u_{i}^{j(i+1)}\right)$ and（ $\left.v_{i}, v_{i}^{j(i+1)}\right)$ ，we can construct a fault－free even cycle $C_{01 \ldots i(i+1)}=\left(v_{i}\right.$ ， $P_{01 \cdots i}\left[v_{i}, u_{i}\right], u_{i}, u_{i}^{j(i+1)}, P_{i+1}\left[u_{i}^{j(i+1)}, v_{i}^{j(i+1)}\right]$ ， $\left.v_{i}^{j(i+1)}, \quad v_{i}\right)$ which contains e ．Obviously， $l\left(C_{01 \cdots i(i+1)}\right)=l\left(P_{01 \cdots i}\left[v_{i}, u_{i}\right]\right)+l\left(P_{i+1}\left[u_{i}^{j(i+1)}\right.\right.$, $\left.v_{i}^{j(i+1)}\right]+2$ where $l\left(P_{01 \ldots i}\left[v_{i}, u_{i}\right]\right)=(i+1) \times d^{k}-2$ $\sum_{a=0}^{i} f_{a}-2$ ，and $l\left(P_{i+1}\left[u_{i}^{j(i+1)}, v_{i}^{j(i+1)}\right]\right)=1,3, \cdots$ ， $d^{k}-2 f_{i+1}-2$ ．Therefore，the cycle $C_{01 \cdots i(i+1)}$ is of length from $(i+1) \times d^{k}-2 \sum_{a=0}^{i} f_{a}+1$ to $(i+2) \times$ $d^{k}-2 \sum_{a=0}^{i+1} f_{a}-2$ and contains the edge e ．Merging the two cycles $C_{012, \ldots i}^{*^{\prime}}$ and $C_{i_{i+1}^{\prime}}$ as well as the two edges $\left(u_{i}, u_{i}^{j(i+1)}\right)$ and $\left(v_{i}, v_{i}^{j(i+1)}\right)$ ，we can construct a fault－free even cycle $C_{01 \cdots i(i+1)}^{\prime}=\left(v_{i}, P_{01 \cdots i}\left[v_{i}, u_{i}\right]\right.$ ， $\left.u_{i}, u_{i}^{j(i+1)}, P_{i+1}\left[u_{i}^{j(i+1)}, v_{i}^{j(i+1)}\right], v_{i}^{j(i+1)}, v_{i}\right)$ which contains e ．Obviously，$l\left(C_{01 \cdots i(i+1)}^{\prime}\right)=l\left(P_{01 \cdots i}\left[v_{i}\right.\right.$, $\left.\left.u_{i}\right]\right)+l\left(P_{i+1}\left[u_{i}^{j(i+1)}, v_{i}^{j(i+1)}\right]\right)+2$ where $l\left(P_{01 \cdots i}\right.$ $\left.\left[v_{i}, u_{i}\right]\right)=(i+1) \times d^{k}-2 \sum_{a=0}^{i} f_{a}-1$ and $l\left(P_{i+1}\right.$ $\left.\left[u_{i}^{j(i+1)}, v_{i}^{j(i+1)}\right]\right)=d^{k}-2 f_{i+1}-1$ ．Therefore，the cycle $C_{01 \cdots i(i+1)}^{\prime}$ is $\left((i+2) \times d^{k}-2 \sum_{a=0}^{i+1} f_{a}\right)$－cycle and contains the edge e ．

Case 2：$e \notin E\left(Q_{k}^{0}(d)\right) \cup E\left(Q_{k}^{1}(d)\right) \cup \cdots \cup$ $E\left(Q_{k}^{d-1}(d)\right), i . e ., u \in Q_{k}^{l}(d)(l \in\{0,1, \cdots, d-$ $1\}), v \in Q_{k}^{m}(d)(m \in\{0,1, \cdots, d-1\}), l \neq m, e$ is an edge of dimension j and $v=u^{j(a)}(j \in\{1,2, \cdots, k+$ $1\}, a \in\{0,1, \cdots, d-1\})$ ．

The proof of Case 2 is similar to the proof of

Case 2 of Theorem 3.

Applying Theorem 6，we have
Corollary 7 Let $n \geqslant 3$ be an integer．For any subset F of $V\left(Q_{n}(d)\right)(d \geqslant 3, d$ is an odd number $)$ with $|F| \leqslant n-2$ ，every vertex of $Q_{n}(d)-F$ lies on a fault－free cycle of every even length from 4 to $d^{n}-2|F|$ ．Moreover，every vertex of $Q_{n}(d)-F$ lies on a fault－free cycle of length $d^{n}-2|F|$ ．

References

［1］LI T K，TSAI C H，TAN J J M，et al．Bipanconnectivity and edge－fault－tolerant bipancyclicity of hypercubes［J］． Information Processing Letters，2003，87：107－110．
［2］TSAI C H．Cycles embedding in hyperbes with node failures［J］．Information Processing Letters，2007， 102（6）：242－246．
［3］XU J M．Combinatorial theory in networks［M］．Bei－ jing：Science Press， 2013.
［4］HWANG S C，CHEN G H．Cycles in butterfly graphs
［J］．Networks，2000，35（2）：161－171．
［5］SAAD Y，SCHULTZ M H．Topological properties of hypercubes［J］．IEEE Transactions on Computers， 1988，37（7）：867－872．
［6］XU J M，DU Z Z，XU M．Edge－fault－tolerant edge－bi－ pancyclicity of hypercubes［J］．Information Processing Letters，2005，96：146－150．
［7］FU J S．Fault－tolerant cycle embedding in the hypercube ［J］．Parallel Computing，2003，29（6）：821－832．
［8］STEWART I A，XIANG Y．Bipanconnectivity and bi－ pancyclicity in k－ary n－cubes［J］．IEEE Transactions on Parallel and Distributed Systems，2009，20（1）：25－33．
［9］CHENG D Q，HAO R X，FENG Y Q．Vertex－fault－tol－ erant cycles embedding in balanced hypercubes［J］．In－ formation Sciences，2014，288：449－461．
［10］HAO R X，ZHANG R，FENG Y Q，et al．Hamiltonian cycle embedding for fault tolerance in balanced hyper－ cubes［J］．Applied Mathematics and Computation， 2014，244：447－456．

有节点故障的 d 进制 n 维方的圈嵌入

李赵祥
（中央民族大学理学院，北京 100081）

摘要：互连网络的容错能力是并行计算中的一个关键问题，而 d 进制 n 维方（超方的一般形式）在计算机的互连网络中已得到广泛的应用。本文考虑有节点故障的 d 进制 n 维方的容错性。 F 是 d 进制 n 维方 $Q_{n}(d)$ 中的错误点集 $(n \geqslant 3)$ ，且 $|F| \leqslant n-2$ ，证明了 $Q_{n}(d)$ 的每个无故障的边和无故障的点存在于长从 4 到 $d^{n}-2|F|$的无故障偶圈中。而且，当 d 是奇数时，$Q_{n}(d)$ 的每个无故障的边和无故障的点存在于长为 $d^{n}-2|F|$ 的无故障圈中。
关键词：圈嵌人 超方 故障容错 互联网络 d 进制

责任编辑：米慧芝

[^0]: 收稿日期：2021－04－15
 ＊国家自然科学基金项目（10771225）资助。
 【作者简介】
 李赵祥（1968－），男，博士，教授，主要从事图论及应用研究，E－mail：zhaoxiangli8＠163．com。
 【引用本文】
 李赵祥．有节点故障的 d 进制 n 维方的圈嵌入［J］．广西科学，2021，28（4）：341－352．
 LI Z X．Cycles Embedding in d－Ary n－Dimensional Cube With Node Failures［J］．Guangxi Sciences，2021，28（4）：341－352．

