投稿系统网址:http://gxkx.ijournal.cn/gxkx/ch

Ca₅Zn₃相稳定性和物理性质的第一性原理研究*

温姜霞,吴升聪,王 俊,陶小马,陈红梅,欧阳义芳** (广西大学物理科学与工程技术学院,广西南宁 530004)

摘要:利用基于密度泛函理论的第一性原理方法对 Ca₅ Zn₃ 化合物的晶格常数、形成焓、弹性常数、以及电子态密度等进行计算研究。为了获得 Ca₅ Zn₃ 化合物的结构稳定性,考虑了 Cr₅ B₃、W₅ Si₃ 以及 Mn₅ Si₃ 3 种结构类型,计算得到的形成焓表明:具有 Cr₅ B₃结构类型的 Ca₅ Zn₃ 最稳定,其次为 Mn₅ Si₃ 型,最后是 W₅ Si₃ 型。对该化合物的弹性常数、电子态密度和电荷密度差进行了计算。最后利用德拜模型,对 Ca₅ Zn₃ 的热物理性能进行了计算,获得体积、体积模量、热膨胀系数以及等容热容随温度和压强变化的规律,为该化合物在热电方面的应用提供了理论依据。

关键词:第一性原理 相稳定性 力学性质 热物理性质 钙锌化合物

中图分类号:O469 文献标识码:A 文章编号:1005-9164(2020)03-0284-07 DOI:10.13656/j.cnki.gxkx.20200618.006

0 引言

近年来,针对具有 A_5B_3 型化合物的研究越来越 多,这是因为该类化合物具有独特的物理化学性 能^[1-5],研究表明超过 40 个金属间化合物具有 A_5B_3 型结构。常见的结构类型有 Cr_5B_3 型、 W_5Si_3 型和 Mn_5Si_3 型这 3 类,Tao 等^[5-8]利用基于密度泛函的第 一性原理方法对 Ta_5Si_3 、 W_5Si_3 、 V_5Si_3 以及 Tl_5Te_3 等化合物的物理化学性能进行模拟计算研究,获得了 这些化合物的结构稳定性、力学性能、电子结构特性 以及热物理性能和热电性能等。含碱土金属Ca的 化合物中,Ca₅Si₃因其有潜在的储氢性能^[3]和热电性 能^[9]备受关注。然而在含 Ca 的化合物中,Ca₅Zn₃也 具有 Cr₅B₃型结构^[1]。2012年,Yang 等^[10]利用基于 密度泛函的第一性原理的方法对 Ca-Zn 体系的 7 个 化合物进行了计算研究,计算获得了形成焓、弹性常 数和电子态密度等信息。然而,至今还没有针对 Ca₅Zn₃的更加系统研究的报道。为了能够获得更加 系统的物理性能,本文将利用基于密度泛函的第一性 原理方法对 Ca₅Zn₃化合物进行系统计算研究,获得 该化合物的热力学稳定性、力学性能、电子结构特性, 并结合德拜模型对其热物理性能进行研究和预测。

【作者简介】

温姜霞(1993-),女,在读硕士研究生,主要从事合金化合物性能研究, E-mail: wenjiangxia@st.gxu.edu.cn。

【**通信作者】

温姜霞,吴升聪,王俊,等.Ca₅Zn₃相稳定性和物理性质的第一性原理研究[J].广西科学,2020,27(3):284-290.

WEN J X.WU S C.WANG J.et al. Phase Stability and Physical Properties of Ca₅Zn₃ Compound by Using First-principles [J]. Guangxi Sciences, 2020,27(3):284-290.

^{*} 国家自然科学基金项目(51661003)和广西自然科学基金项目(2018GXNSFAA281254,2018GXNSFAA281291,2019GXNSFAA18505)资助。

欧阳义芳(1965一),男,教授,主要从事凝聚态物理研究,E-mail:ouyangyf@gxu.edu.cn。

[【]引用本文】

1 材料与方法

1.1 Ca₅Zn₃的晶体结构

采用 $Cr_5 B_3$ 型、 $W_5 Si_3$ 型和 $Mn_5 Si_3$ 型等 3 种结 构来讨论 $Ca_5 Zn_3$ 结构稳定性。其中 $Cr_5 B_3$ 型结构是 一个四方晶系的结构, Pearson 符号为 tI32, 共有 4 种 不同占位, Cr 占据 161 和 4c 位, B 占据 4a 和 8h 位。 每个 $Cr_5 B_3$ 型结构单胞中含有 10 个 Cr 原子, 6 个 B 原子。其余两种结构的具体信息可参见文献[5]。3 种晶体结构如图 1 所示。

(a) Cr₅B₃型,(b) W₅Si₃型,(c) Mn₅Si₃型;蓝色为Ca原子,灰色为Zn原子

(a) Cr_5B_3 prototype,(b) W_5Si_3 prototype,(c) Mn_5Si_3 prototype;the blue atom is Ca,the grey atom is Zn

图 1 Ca₅Zn₃化合物的 3 种晶体结构

Fig. 1 Tree crystal structures of $Ca_5 Zn_3$ compounds

1.2 计算方法

本文采用基于密度泛函理论(Density Functional Theory, DFT)的第一性原理计算软件包 Vienna Ab initio Simulation Package (VASP)^[11]进行计算。 第一性原理计算方法是投影缀加波方法^[12-13],交换关 联势采用广义梯度近似的 Perdew-Burke-Ernzerhof (PBE)方案^[14]。布里渊区积分采用 Monkhorst Pack 布点方法^[15],对于 Cr₅B₃ 和 W₅Si₃ 结构,K 点取 11× 11×11,而对 Mn₅Si₃ 结构,K 点为 9×9×11。在本 文计算中,波函数的截断能设置为 500 eV,能量收敛 精度为 10⁻⁶ eV。在进行性能计算前,所有结构都进 行全优化,直到原子间的力小于 0.01 eV/Å 为止,以 保证计算的准确性。有关形成焓、弹性常数以及热物 理性质的计算方法参见文献[5]。

Ca₅Zn₃化合物形成焓可以用以下的公式进行 计算:

 $\Delta H (Ca_5 Zn_3) = E_{total} (Ca_5 Zn_3) - 5E_{total} (Ca) - 3E_{total} (Zn),$ (1) 其中, $E_{total} (Ca_5 Zn_3) \cdot E_{total} (Ca)$ 和 $E_{total} (Zn)$ 分别是 Ca₅ Zn₃ 合金、Ca 以及 Zn 元素的总能量。

晶体弹性常数是一种反映材料基本性质的常数, 它描述了晶体对外加应变的响应刚度。当忽略温度 对体系总能的影响时,在应变很小的情况下,体系的 内能与应变的大小存在二次线性关系(胡克定律),弹 性常数就是描述这种二次线性关系,即二次线性项的 系数。为了计算弹性常数,我们通过设定一组形变 量,求解固体在不同形变下所对应的总能量,利用弹 性理论公式拟合这组能量就可以得到它们的弹性常

数。通过定义一个应变张量 ε ,可使基矢 a 转换为新 矢量:

$$\vec{a}' = (\vec{I} + \varepsilon)\vec{a}$$
, (2)

$$\boldsymbol{\varepsilon} = \begin{pmatrix} \varepsilon_1 & \varepsilon_6/2 & \varepsilon_5/2 \\ \varepsilon_6/2 & \varepsilon_2 & \varepsilon_4/2 \\ \varepsilon_5/2 & \varepsilon_4/2 & \varepsilon_2 \end{pmatrix}, \qquad (3)$$

*I*为 3×3 的单位矢量。采用 Voigt 标记 *xx*→1、 *yy*→2、*zz*→3、*yz*→4、*zx*→5、*xy*→6。在这套符号系 统中,弹性常数被写为 C_{ij} ,*i*和*j*遍及 1—6。定义应 力张量 σ_i ,由此,体系总能的 Taylor 展开可以表示 为

$$E(V,\varepsilon) = E(V_0,0) + V_0 \sum_i \sigma_i \varepsilon_i + \frac{V_0}{2} \sum_i C_{ij} \varepsilon_i \varepsilon_j + O(\varepsilon_i^3) , \qquad (4)$$

其中, V₀ 是晶格平衡时的体积。上式第二项是一个 线性项, 如果体积没有变化或者在平衡位置处, 该项 为零; O(ε³_i) 是在展开的多项式中忽略ε_i 的立方项 或者更高次项。

 $Cr_5 B_3$ 结构类型的 $Ca_5 Zn_3$ 是四方晶系。四方晶 系有 6 个独立弹性常数,分别为 C_{11} , C_{12} , C_{13} , C_{33} , C_{44} 和 C_{66} 。通过下面 6 个形变矩阵可以求得相应弹 性常数(表 1)。

表 1 四方晶系形变矩阵及相应形变能

Table 1 Deformation matrix of the tetragonal system and the corresponding deformation energy

形变矩阵 Deformation matrix	形变后能量表达式 Energy expression after deformation
$\begin{pmatrix} 1+\boldsymbol{\epsilon} & 0 & 0\\ 0 & 1+\boldsymbol{\epsilon} & 0\\ 0 & 0 & 1 \end{pmatrix}$	$E(\varepsilon) = E(0) + (C_{11} + C_{12})V_0\varepsilon^2 + O(\varepsilon^3)$
$\begin{pmatrix} 1+\boldsymbol{\epsilon} & 0 & 0\\ 0 & 1-\boldsymbol{\epsilon} & 0\\ 0 & 0 & 1 \end{pmatrix}$	$E(\varepsilon) = E(0) + (C_{11} - C_{12})V_0\varepsilon^2 + O(\varepsilon^3)$
$\begin{pmatrix}1&0&0\\0&1&0\\0&0&1+\varepsilon\end{pmatrix}$	$E(\varepsilon) = E(0) + \frac{1}{2}C_{33}V_0\varepsilon^2 + O(\varepsilon^4)$
$\begin{pmatrix} 1+\epsilon & 0 & 0\\ 0 & 1+\epsilon & 0\\ 0 & 0 & 1+\epsilon \end{pmatrix}$	$E(\varepsilon) = E(0) + \frac{1}{2}(2C_{11} + 2C_{12} + C_{33} + 4C_{13})V_0\varepsilon^2 + O(\varepsilon^4)$
$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & \boldsymbol{\varepsilon} \\ 0 & \boldsymbol{\varepsilon} & 1 \end{pmatrix}$	$E(\varepsilon) = E(0) + 2C_{44}V_0\varepsilon^2 + O(\varepsilon^4)$
$\begin{pmatrix} 1 & \boldsymbol{\varepsilon} & \boldsymbol{0} \\ \boldsymbol{\varepsilon} & 1 & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} & 1 \end{pmatrix}$	$E(\varepsilon) = E(0) + 2C_{66}V_0\varepsilon^2 + O(\varepsilon^4)$

德拜温度作为一个基本的物理参数,与热容、弹 性常数等有着密切联系。一般来说,德拜温度越高, 化合物熔点越高,意味着原子间的相互作用越强。一 般来说,德拜温度(@)可以从平均声速(u_m)进行 估算:

$$\Theta = \frac{h}{k_B} \left(\frac{3}{4\pi V}\right)^{1/3} u_m , \qquad (5)$$

其中,h 和k_B分别是普朗克常数和玻尔兹曼常数,V 是原子平均体积,在多晶体中的平均声速(u_m)可以 用以下公式计算:

$$u_{m} = \left[\frac{1}{3}\left(\frac{2}{u_{i}^{3}} + \frac{1}{u_{i}^{3}}\right)\right]^{-1/3},$$
(6)

其中,u, 和 u, 分别是横向声速和纵向声速,这两种 声速可以通过以下公式获得:

$$u_t = \left(\frac{G}{\rho}\right)^{1/2},\tag{7}$$

$$u_{\iota} = \left(\frac{3B+4G}{3\rho}\right)^{1/2},\tag{8}$$

其中,G为剪切模量,B为体积模量,ρ为质量密度。

2 结果与分析

2.1 结构稳定性能

为了获得 $Ca_s Zn_a$ 的结构稳定性,考虑了 $Cr_s B_a$ 型、 $W_s Si_a$ 型和 $Mn_s Si_a$ 型 3 种晶体结构,计算获得的 晶格常数、形成焓(表 2),同时分析 3 种晶体结构的 总能随体积变化的关系(图 2)。本文计算获得的 $Cr_s B_a$ 型晶格常数为 7.865 6 Å 和 15.366 3 Å,Bottcher 等^[1]的实验值为 7.963 Å 和 15.407 Å,其他第 一性原理计算值^[10]为 7.802 Å和 15.620 Å。本文 的晶格常数计算值与实验值之间的误差为 1.22%和 0.26%,比 Yang 等^[10] 计算值的误差(2.02%, 1.38%)小,说明本文计算获得的晶格常数更为合理。 W_5Si_3 型和 Mn_5Si_3型 Ca_5Zn_3 化合物的晶格常数也 作为预测结果列于表 2。从表 2 中给出的形成焓可 以看出,Cr₅B₃型 Ca₅Zn₃ 的形成焓最低为-0.201 eV/atom,其他两种晶体结构的形成焓分为-0.160 eV/atom和-0.164 eV/atom。从能量的角度,其他 两种晶体结构的形成焓比 Cr₅B₃型的形成焓高出 0.04 eV/atom,因此,具有 Cr₅B₃ 型的形成焓高出 0.04 eV/atom,因此,具有 Cr₅B₃ 型的形成焓高出 0.04 eV/atom,因此,具有 Cr₅B₃ 型的Ca₅Zn₃ 是 最稳定的化合物。从图 2 中可以看出,具有 Cr₅B₃ 型 的 Ca₅Zn₃ 具有最低的总能量,同样表明 Cr₅B₃ 型 Ca₅Zn₃ 是最稳定的化合物,这与 Bottcher 等^[1]的实 验结果是一致的。

表 2 Ca₅Zn₃化合物的晶格常数和形成焓

Table 2Lattice constant and formation enthalpy of the Ca5 Zn3compounds

晶体结构类型 Prototype structure	晶枠 Lattice cc	形成焓 Formation		
	а	с	(eV/atom)	
$\operatorname{Cr}_5 \operatorname{B}_3$	7.865 6	15.366 3	-0.201	
	7.963 0	15.407 O ^[1]		
	7.802 0	15.620 0 ^[10]	$-0.191^{[10]}$	
$\mathbf{W}_{5}\mathbf{Si}_{3}$	12.242 8	6.295 2	-0.160	
Mn_5Si_3	9.110 5	6.728 4	-0.164	

图 2 具有 3 种不同晶体结构的 Ca₅ Zn₃ 化合物总能量与体积的关系

Fig. 2 Relationship of total energy and volume of ${\rm Ca}_5\,{\rm Zn}_3$ compounds with three different crystal structures

2.2 力学性能

为了研究 $Ca_5 Zn_3$ 的力学性能,本文计算了稳定 相的晶格常数,由上文可知 $Cr_5 B_3$ 型晶体结构属于四 方晶系,其独立的弹性常数为 6 个,为此,本文利用应 力应变的方法^[16] 对其弹性常数进行了计算(表 3)。 根据四方晶系力学稳定性条件: $C_{11} > 0, C_{33} > 0,$ $C_{44} > 0, C_{66} > 0, (C_{11} - C_{12}) > 0, (C_{11} + C_{33} - 2C_{13}) >$ 表3 $Ca_5 Zn_3$ 化合物的力学性能参数

Table 3 Mechanical property parameters of Ca₅ Zn₃ compounds

0 和 $(C_{11} + C_{12})C_{33} - 2C_{13}^2 > 0$,本文计算获得的 Ca₅Zn₃的弹性常数都满足力学稳定性条件,表明该 化合物具有静力学稳定性。 C_{11} 大于 C_{33} ,由此可见 在[100]和[010]方向上的键强度高于[001]方向上的 键强度。多晶体的体积模量、剪切模量以及杨氏模量 都可以从弹性常数给出^[5]。本文计算得到的体积模 量和 Yang 等^[10]报道的计算值吻合,而剪切模量的计 算值比 Yang 等^[10]报道的计算值稍小,这是由于本文 计算的 C_{33} 比 Yang 等^[10]报道的计算值稍小导致的。

B/G 值一般用来预测化合物的脆韧性^[17],该比 值大于 1.75,化合物呈现韧性,比值越大韧性越大; 反之,该比值小于 1.75,则化合物呈现脆性,且比值 越小脆性越大。Ca₅Zn₃ 的 B/G 值为 2.61,说明该化 合物呈现韧性。为了研究化合物的各向异性,对于四 方晶系来说,一般用 $A_1 = 2C_{66}/(C_{11} - C_{12})$ 和 $A_2 = 2C_{44}/(C_{11} - C_{12})$ 进行说明。该数值为 1 时,则呈现 各向同性,偏离 1 越远则各向异性越明显。为了更加 明显地呈现该化合物的各向异性,图 3 给出了杨氏模 量的空间分布图,由此可以清晰地看出在不同的方向 上,杨氏模量的数值存在明显的差异。

数据来源 Data source	<i>C</i> ₁₁ (GPa)	C_{12} (GPa)	<i>C</i> ₁₃ (GPa)	С ₃₃ (GPa)	<i>C</i> ₄₄ (GPa)	С ₆₆ (GPa)	B_H (GPa)	B_V (GPa)	B_R (GPa)	G _H (GPa)	G_V (GPa)
Present	40.54	18.53	22.69	28.79	14.60	10.8	26.16	26.41	25.92	10.02	11.06
[10]	42.8	19.3	20.8	34.3	13.9	19.1	26.7	26.9	26.6	12.8	13.3
数据来源 Data source	G_R (GPa)	E (GPa)	υ	B/G	A_1	A_2	u_t (m/s)	u_l (m/s)	u_m (m/s)	<i>Θ</i> (K)	
Present	8.98	26.66	0.330	2.61	0.98	1.33	190 1	307 2	209 7	202	
[10]	12.2	33.1	0.294	2.04							

注: C_{11} 、 C_{12} 、 C_{13} 、 C_{33} 、 C_{44} 、 C_{66} 为弹性常数; B_H 、 B_V 、 B_R 为体积模量; G_H 、 G_V 、 G_R 为剪切模量;E为杨氏模量;v为泊松比; A_1 、 A_2 为各向异性因子; u_t 、 u_t 、 u_m 为声速, Θ 为德拜温度

Note: Elastic constants $(C_{11}, C_{12}, C_{13}, C_{33}, C_{44}, C_{66})$, bulk modulus (B_H, B_V, B_R) , shear modulus (G_H, G_V, G_R) , Young's modulus (E), Poisson's ratio (v), elastic anisotropic parameters (A_1, A_2) , sound velocities (u_t, u_l, u_m) , Debye temperature (Θ)

2.3 电子结构特性

为了深入了解该化合物原子间的相互作用,本文 计算了该化合物的电子态密度和电荷密度差(图 4)。 由图 4a 可以看出,在费米面以下的电子态密度,主要 是 Ca 的 s 电子和 p 电子以及 Zn 的 s 电子和 p 电子 的贡献,费米面以上的电子态密度主要是 Ca 的 d 电 子和 Zn 的 p 电子的贡献。在费米面附近,Ca 的 p 电 子和 d 电子跟 Zn 的 p 电子发生杂化效应。在费米能 外态密度不为零,说明该化合物呈现金属性。由图 4b和图4c可知,Ca和Zn之间主要呈现离子键特性,Ca失去电子,而Zn则获得电子,这个和图4a中的电子态密度在费米面附近发生杂化效应是一致的。 由于Ca的电负性为1.0,Zn的电负性为1.6,电负性 越大表明越容易获得电子,由此可见本文的计算结果 是合理的。

Fig. 3 Spatial distribution of Young's modulus for ${\rm Ca}_5 {\rm Zn}_3$ compounds (GPa)

2.4 热物理性能

Ca₅Zn₃化合物的德拜温度为202K。平均声速为2097m/s,纵向声速为3072m/s,横向声速为1901m/s(表3)。利用德拜模型^[18-21],结合第一性

原理总能量的计算结果,计算了 Ca₅Zn₃ 化合物在 0-1 000 K 温度范围、0-10 GPa 压强范围内的热物 理性质(图 5)。由图 5a 可知,化合物的体积随着温 度的升高而增加,但是随着压强的增加则降低。并且 随着压强的越来越大,体积减小的幅度越来越小,说 明原子间的作用力也越来越大。图 5b 给出了体积模 量随温度和压强的变化关系,随着温度的升高,体积 模量有所下降,但是随着压强的增加,体积模量也在 增加。图 5c 表示热膨胀系数随着温度的升高而增 加,随着压强的增大而热膨胀系数增加的幅度降低。 在 6 GPa 以上时,随着温度的上升,热膨胀系数增加 的幅度极小。表明在高压下,热膨胀系数变化小,体 积膨胀不明显。图 5d 展示的是定容热容随温度和压 强的变化关系,在 0-300 K 区间,定容热容急速增 加,在300-400 K 区间,等容热容的上升趋势变缓, 在 400 K 以上,已经接近等容热容的极限值,即杜隆 珀蒂极限。

(a)电子态密度,(b) (001)面,和(c) (110)面
(a) electronic density of state,(b) (001) plane and (c) (110) plane
图 4 Ca₅Zn₃ 的电荷密度差
Fig. 4 Charge density difference of Ca₅Zn₃

温姜霞等.Ca₅Zn₃相稳定性和物理性质的第一性原理研究

图 5 Ca₅Zn₃的(a)体积,(b)体积模量,(c)热膨胀系数和(d)等容热容随温度和压强的变化

Fig. 5 Change of (a) volume, (b) bulk modulus, (c) thermal expansion and (d) heat capacity of $Ca_5 Zn_3$ with the temperature at various pressures

3 结论

1)具有 Cr₅B₃型的 Ca₅Zn₃形成焓最低,是最稳 定的结构,与前人的实验结果一致。

2)弹性常数的计算值显示其满足四方晶系的力 学稳定性标准,计算得到了体积模量、剪切模量、杨氏 模量以及 B/G 值,B/G 值显示该化合物呈现韧性特 征。杨氏模量呈现各向异性。

3)电子态密度显示 Ca 的 p 电子和 d 电子与 Zn 的 p 电子在费米能附近发生杂化效应,费米面上有态 密度说明该化合物为金属性。电荷密度差显示 Ca 失去电子、Zn 得到电子,与这两种元素的电负性符 合,同时呈现离子键特性。

4)体积、体积模量、热膨胀系数以及定容热容随着温度和压强的变化趋势说明,随着压强的增加、体积变小,体积模量变大、热膨胀系数变小,定容热容在低温下变小,高温下趋于一致。

参考文献

[1] BOTTCHER P, DOERT T, DRUSKA C, et al. Investi-

gations on compounds with $Cr_5 B_3$ and $In_5 Bi_3$ structure types [J]. Journal of Alloys and Compounds, 1997, 246 (1/2):209-215.

- [2] VENTURINI G, WELTER R. Single crystal refinement of tetragonal Tm₃ (Ga, Ge)₅ with anti-Cr₅B₃ structure
 [J]. Journal of Alloys and Compounds, 2000, 299(1/2): L9-L11.
- [3] WU H,ZHOU W,UDOVIC T J, et al. Structural variations and hydrogen storage properties of Ca_5Si_3 with Cr_5B_3 -type structure [J]. Chemical Physics Letters, 2008,460(4/5/6):432-437.
- [4] YUAN F,FORBES S,RAMACHANDRAN K K, et al. Structure and physical properties of $Cr_5 B_3$ -type $Ta_5 Si_3$ and $Ta_5 Ge_3$ [J]. Journal of Alloys and Compounds, 2015,650:712-717.
- [5] TAO X M, JUND P, COLINET C, et al. Phase stability and physical properties of Ta₅Si₃ compounds from firstprinciples calculations [J]. Physical Review B, 2009, 80: 104103.
- [6] TAO X M, JUND P, COLINET C, et al. First-principles study of the structural, electronic and elastic properties of W₅Si₃[J]. Intermetallics, 2010, 18(4):688-693.
- [7] TAO X M, JUND P, VIENNOIS R, et al. Physical properties of Thallium-Tellurium based thermoelectric compounds using first-principles simulations [J]. The Journal of Physical Chemistry A, 2011, 115(31):8761-8766.

- [8] TAO X M, CHEN H M, TONG X F, et al. Structural, electronic and elastic properties of V₅Si₃ phases from first-principles calculations [J]. Computational Materials Science, 2012, 53(1):169-174.
- [9] RITTIRUAM M, HEMATHULIN S, YOKHASING S, et al. First-principles calculation on electron transport properties of Ca-Si [J]. Materials Today-Proceedings, 2018,5(6):14052-14056.
- [10] YANG Z W, SHI D M, WEN B, et al. Structural, elastic, electronic properties and heat of formation of Ca-Zn intermetallics from first-principles calculations [J]. Journal of Alloys and Compounds, 2012, 524:53-58.
- [11] BLÖCHL P E, FÖRST C J, SCHIMPL J. Projector augmented wave method: Ab initio molecular dynamics with full wave functions [J]. Bulletin of Materials Science, 2003, 26(1): 33-41.
- [12] KRESSE G, FURTHMÜLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Computational Materials Science, 1996, 6(1):15-50.
- [13] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54 (16):11169-11186.
- [14] PERDEW J P, WANG Y. Accurate and simple analytic representation of the electron-gas correlation energy

[J]. Physical Review B,1992,45(23):13244-13249.

- [15] CHADI D J. Special points for Brillouin-zone integrations [J]. Physical Review B,1977,16(4):1746-1750.
- [16] FU C L, WANG X D, YE Y Y, et al. Phase stability, bonding mechanism, and elastic constants of Mo₅Si₃ by first-principles calculation [J]. Intermetallics, 1999, 7 (2):179-184.
- [17] PUGH S F. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals
 [J]. The Philosophical Magazine, 1954, 45(367):823-843.
- [18] BLANCO M A, FRANCISCO E, LUAÑA V, GIBBS: Isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model [J]. Computer Physics Communications, 2004, 158(1): 57-72.
- [19] 陶小马,陈晨,郭子凤,等. RE₂Ti₃Si₄ (RE = Gd, Tb, Dy, Ho和 Er)物理性质的第一性原理研究[J]. 广西科学, 2014, 21 (3): 226 230. DOI: 10. 13656/j. cnki. gxkx. 20140612. 004.
- [20] 谭旺,陈贞军,黄盼宁,等. B2-CuRE 物理性质的第一性 原理计算[J]. 广西科学, 2016, 23(2):174-179. DOI: 10.13656/j. cnki. gxkx. 20160511.007.
- [21] 陶小马,姚佩,刘科成,等. Ta-C 化合物物理性质的第 一性原理研究[J]. 广西科学,2017,24(6):545-550. DOI:10.13656/j. cnki.gxkx.20171127.001.

Phase Stability and Physical Properties of Ca₅Zn₃ Compound by Using First-principles

WEN Jiangxia, WU Shengcong, WANG Jun, TAO Xiaoma, CHEN Hongmei, OUYANG Yifang (School of Physical Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China)

Abstract: Using the first-principles method based on density functional theory, the lattice constants, formation enthalpy, elastic constants, and electronic state densities of $Ca_5 Zn_3$ compounds were calculated and studied. In order to obtain the structural stability of $Ca_5 Zn_3$ compounds, three structural types of $Cr_5 B_3$, $W_5 Si_3$ and $Mn_5 Si_3$ were considered. The calculated formation enthalpies indicate that $Ca_5 Zn_3$ with $Cr_5 B_3$ structure type is the most stable, followed by $Mn_5 Si_3$ type, and finally is $W_5 Si_3$ type. The elastic constants, electronic state densities and charge density difference of $Ca_5 Zn_3$ compound were calculated. Finally, using the Debye model, the thermo-physical properties of $Ca_5 Zn_3$ were calculated, and the laws of volume, bulk modulus, thermal expansion coefficient and isochoric heat capacity with temperature and pressure were obtained. It provides a theoretical basis for the application of this compound in thermoelectric field.

Key words: first principles, phase stability, mechanical properties, thermo-physical properties, compounds of calcium and zinc

责任编辑:符支宏