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Abstract: This paper investigates the pth moment stability and stabilization problems of a class
of hybrid stochastic retarded systems under asynchronous Markovian switching. By exploring
the relationship between the sizes of Markov switching signal detection time delay and the gen-
erator of Markov chain, a novel integral-inequality-estimation technique is developed to deal
with time-varying delay. The Lyapunov stability criterion of asynchronous Markov switching
time delay system is established. Then the criterion is applied to a class of Markovian jump
time-delay systems,and the delay independent stability criterion and the design of stabilization
controller are given. Finally, two numerical examples are provided to demonstrate the validity
of the developed results.
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which are widely applied in many fields such as fail-
ure-prone manufacturing, traffic management, pow-
er systems,and networked control systems. Stability
properties and control synthesis are the crucial and
fundamental problems of these successful applica-
tions, which have been extensively studied (see, for
instance and the references therein™™). It has been
shown that mode-dependent controller is more gen-
eral, flexible and less conservative in solving control
synthesis problems. Unfortunately, most of the
work done on the mode-dependent controller is built
upon the assumption that the switching signal of
controller and the system modes are strictly syn-
chronized. The so-called “asynchronous switching”
which takes into account the detected delay of switc-
hing signal when implementing the controller may
be reasonable in reality’®”’. However, asynchronous
switching may lead to instability or performance
degradation of the switched system due to the mis-
matched controller act on each subsystem. There-
fore,asynchronous switching control is more realis-
tic and challenging. Some salient results have been
done on switched systems under asynchronous
switching control,such as [6-127]. The stabilization
problem of switched linear systems with detected
delay of switching signal was studied in [ 8]. By u-
sing a novel Lyapunov-like function approach, the
authors of [ 6] solved the stability and /,-gain prob-
lems for discrete-time switched systems with aver-
age dwell time and asynchronous switching. Some
further result on asynchronous switching control for
continuous-time and discrete-time switched systems
were obtained in [ 10]. Based on a new integral ine-
quality and the piecewise Lyapunov - Krasovskii
functional technique, the stabilization problem for a
class of switched linear neutral systems under asyn-
chronous switching was addressed in [12].

It should be pointed out that the above-men-
tioned results are only suitable for deterministic sys-
tems. As we all know, in real-world evolutionary
processes, noise is unavoidable. The presence of
noise can degrade the performance of the corre-
sponding deterministic dynamics and even may dras-
tically alter the system dynamics behaviorst*!. Con-
sequently,stochastic modeling has played an impor-
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tant role in areas of automatic control. Recent years,
hybrid stochastic systems which driven by continu-
ous-time Markov chains and Wiener process have
been studied by many works,see [ 13-227]. However,
there is few work which has been done on hybrid
stochastic systems with asynchronous switching
control. For dwell-time-based asynchronous switc-
hing control, there is a general requirement (R):
The detected delay of switching signal is less than
the corresponding switching interval, see [ 23-25 ].
However, this requirement seems to be difficult to
meet for randomly switched systems due to the
switching signal is a stochastic process. For exam-
ple,in Markovian switching control,it is well known
that almost every sample path of Markov chain is a
right-continuous step function,i. e. , for every sam-
ple path,the switching intervals is almost sure grea-
ter than zeros,but it is not easily to obtain the lower
bound of the switching interval for all sample paths.
Although the asynchronous Markovian switching is-
sues have been studied"®?’, there is further room
for investigation. For example,in[ 26-27 ], the au-
thors only investigated the stability and stabilization
of discrete-time Markovian jump systems via a time-
delayed controller. Under the assumption R, Razu-
mikhin-type stability criteria for hybrid stochastic
retarded systems were established in [ 28], but the
stability conditions depend on a sequence of stop-
ping time caused by Markov chain, and thus resul-
ting in inconvenient application and verification.
This paper revisits asynchronous Markovian
switching control problem of hybrid stochastic re-
tarded systems through considering the relationship
among the sizes of detected delay of switching signal
and the transition probabilities of Markov chain. In
contrast to Halanay’ s inequality or Razumikhin -
type analysis technique,an integral-inequality-esti-
mation technique is proposed to establish pth mo-
ment exponential stability criteria irrespective of the
sizes of the state delay for hybrid stochastic retarded
systems with an asynchronous Markovian switching
controller. For its application, the obtained results
are applied to a class of stochastic delayed systems
with asynchronous Markovian switching that in-
clude linear stochastic systems,recurrent neural net-
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works. Moreover, the stabilizing mode - dependent
controller is designed by solving a set of linear ma-
trix inequalities (LMIs). Compared with the case of

06187 " our results do

synchronous switching results
not impose any restriction on the derivative of state

delay.
1 System description and preliminaries

Notation For a real symmetric matrix A, the
notation A > (<, <{, >>)0 means that the matrix A
is positive (negative, semi-negative, semi-positive)
definite, and A,.«(A) AL (A) , respectively, denote
the largest and least eigenvalue of A. The symmet-
ric elements of a symmetric matrix are denoted by
x. |« || denotes the Euclidean vector norm. For
>0, let C({— 7,0];R") denote the space of con-
tinuous functions ¢ from [— 7,0] to R" with norm
c=sup o |l g+ .
$(t) € C([—7,6]3;R") withb>0andz € [0,b] ,the
associated function ¢, € C([—7,0];R") is defined as
¢, () =p(t+3s),s € [—7,0]. C""(R" X R.3R.) de-

notes the family of all nonnegative functions V(x,t)

For a given function

on R” X R; that are twice continuously differentiable
in x and once in ¢. Given a complete probability
space (2,7, P) with a natural filtration {7, }~, sat-
isfying the usual conditions, let w(¢) = (w, (£) .+,
w, (1))T € R” be an m -dimensional Wiener process
defined on the probability space.
Consider the following time-delay hybrid sto-
chastic system
de(®) =[Ff,0 (x (@)t — () t) +
hocoy (2 () s ugepy (e () Jde +
o () st — (1)), ) dw () ,t > ¢t »
x, () =@(s) s — T <5< 0,0(t)) =0,

@b
where x () € R” is the state variable. {c(2),t >1¢,}
is a right-continuous Markov process defined on the
probability space which takes values in the finite set
M={1,2,+
given by

PlcG+At)=j o) =i})=
m; At +o(At) i #j,
1+mAt +0(At),i=j,

where At > 0, lim oldz)
ar—>o0 At

s N} with generator II= (x;),i,j € M,

>=0fori+#j,

=0,and 7
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;. t(1) are state delay

< 0 with 2 T

satisfies 0 << z(¢) << z. For eachi € A, f,:R* X R" X
R.— R".g.: R" X R* X Rk— R"",h,: R" X Ry—
R"" , and «; :R"” = R""" is mode-dependent control
input which is used to achieve system stability or
certain performances.

It is noted that in the controlled system (1),
the control input is coincident with the switching
rule. However,just as [6-7] point out that this re-
quirement is hard to be satisfied in the physical sys-
tems,the control input may exist a time delay which
is induced by the identification of the system modes
or the implementation of the matched controller.
That is,the control input u,, (x (¢)) should be mod-
ified by uy s (x()) ,whered > 0 ando(t —3) =0,
if t << §. Hence,the resulting closed-loop system is
given by

de () =[fo (x(@®,xt—1()),t) +
oo (x () s D uyersy (2 (1)) ]de +
oo () st — () O dw () st > 14,

2, () =¢(s), —t<s<0,0(2,) =0y,

(2)
Obviously, because of the existence of the mis-
matched control input,it may degrade the perform-
ances and even cause instability if applying the
matched control input and the switching signal de-
signed for system (1) to system (2). Therefore, this
paper attempts to establish general stability criteria
for the hybrid stochastic system under asynchronous
Markovian switching,and quantitatively analyze the
effect of the detected delay of switching signal on

the stability performance. For this purpose, we al-
ways assume that for eachi,; € ,///,7',7 (0,0,1) =0,

g:(0,0,6)=0,for allt =>1¢,,and both f; (x,y.t) and
g:(x,y,1) satisfy the local Lipschitz condition and

linear growth condition, where 7}, (x,y,)=f(x,y,
) +h,(xs)u; (x). Hence,it follows from Theorem
8.3 of [13] that system (2) has a unique global so-
lution,and x (¢;¢,,0) =0 is the trivial solution.

For eachi € M ,ifV, € C*'(R" X R, ;R.), de-
fine an operator associated with (2) by

SV (x,stsisj) =G, (x(t) yx(t — () ,t) +
AG,; (x(D),1),
where
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WV lx,t) | IV, (x,t)
dt dx

Lfi(xayst) +h(x,Du, ()] +

G,(;Tayvt) -

a? ot
l‘[racelz(s;‘,‘T(Jc,y,t) Mg;(x,y,t)] +
2 dx

N
er,jVj (Ivt) ’
=1
AG, ety =TV 00 ) ) —
dx
w; ().

Then the generalized 1t6 formula™® can be given as
follows

EV”(’Z) (1'(t2) ’tz) :EVJ(ZI) (1’(1‘1 ) 9t1) +

EJ DV (25 20(s) s6(s — O dsaty =1, =1,.  (3)

)

To make this paper more readable,we give the
definition of pth moment exponential stability.
Definition 1  The zero solution of system (2) is
pth-moment exponentially stable,if there exist two
positive scalars M and ¥ such that

Ellz) " <ME [l 2e7 "t = 4.
2 Stability analysis

Theorem 1 Consider hybrid stochastic system (2),
if there exist nonnegative functions V; € C*'(R" X
R.; R.) , positive constants E,Z‘,El 5E0scCijo] F i
such that for any x,y € R",7,j € A, the following

conditions hold:

zll?<Vien<elzlr, 0

G(z,y, )< —& llzll”+& Iyl (5

AG, (x.0) < ¢, lxll?.j#1, (6)

_ N N

CS_]‘FEZ 2 Ci,ij;(8)<£Sls (7)
i=1j=1.j%i

where ™ =(P; (§)) xxn » then system (2) is pth-mo-
ment exponentially stable.

Proof Set W() ="V, , (x(2),t), where ¥y =

& — 2 ,\:1 21\:1;7& <. Pii ()
c

. Applying the gener-

alized 1t6 formula to W(z) and utilizing conditions
(5) and (6),we have

EW () =EW (z,) +EJ e’ [V, (2 (s) vs) +

0

SV(x,s550(s) 50(s — ) 1ds << EW (1,) +

EJ e’ "))[(7;* &+ o) T2 17+

0

& |l x(s— () || #]ds.
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Letc,; =0,i € M, then for anyt = t,,

N N
Colt)va—0) — E : E : C,._,Imnﬂ; I»m—man -

i=1j=1.j%#i
N N

2 2 Ci.,JE{I{g(/):n I<g<1—a>:j',~ ‘ 97/—5} -
i=1j=1.j%i

N N

2 2 Cz.JI{d(tfﬁ)*]}E{Iw(z‘)*z) ‘ Fs} =
i=1j=1.j#i

N N

DD codwin-—pPlo =il ot—0)=j) =
i=1j=1.j%i

N N N N

2 Z CI.JI;mfa)—J}Pﬂ )] g Z 2 C,.‘,P‘,,(a).
i=1j=1.j%i i=1j=1.j%i

Based on this fact,we have

EW@G) < EW(y) + Ezﬁ e COE] 2(s —

‘o

() |l 7ds.
Applying (4) again, the above inequality can be

transferred to

OE 2 1P << EE @l 2+
.

;’iJ STV E | 2(s— () || ? ds. (8)
CJy

Define a strictly monotonically increasing func-
tionp(0) =act +cgse e D) DI e P —

c&y» then it follows from (7) that p(0) <C 0 and
oY) =c&,¢’" > 0. According to the intermediate val-

ue theorem, there exist a constant y € (0,7) such

7
that p () :O,whencec §2¢ =1. In the sequel,we

y—m
will show that for any ¢ > 1,

Elz@ "< SElglter o <
Me 7 Yt =1, —, (9
where M= SE || ¢ [/ 2. If (9) is not true, then by
.

the continuity of E | () || # on (¢, + ©©) , there
exists £; >t, such that E|l 2 (¢) | # = Me 7%,
Lett” =inf{t € (ty.t, LE[ 2 || ? =
«cMe 7%} we have
ElzG ) |*=cMe7" % Ellz(s) [ * <
Me 79 , for alls € [ty — .27 ).
Then inequality (8) has the estimation at¢”
dCWE G [P <M+

SJJ eY(.w/())( Me*r](A*T(.\‘>*I‘])dA§ < M+
CJy
” nT
Sfze“( MJ e e ’U>ds<<1\4(1*75Ze ) +
¢ c(y—m
SZeVT (Me(yfrz) (rxfro) —E H () H /Jey(z*ﬂ‘ﬂ s
c(y —m
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which leads to a contradiction. Therefore, (9) holds.

Letting c = 1" in (9),it follows that

E H x (1) H ’ < LL—‘E H @ H ée*v(tfrw'

Therefore,system (2) is pth-moment exponentially
stable.

Remark 1 Theorem 1 reveals that if the synchro-
nous switched controlled system (1) is pth-moment
exponentially stable (i. e. the conditions (4), (5)
and (7) with 6 =0 hold) , then there exists a small e-
nough ¢ such that the asynchronous switched con-
trolled system (2) is also pth-moment exponentially
stable. Actually,it follows from (7) that the admis-
sible time delay of mismatched switching can be eas-
ily calculated for the synchronous switched con-
trolled systems with the pre-designed controller and
the generator of Markov chain. On the other hand,it
is interesting to compare our result with existing re-
sults for the case of synchronous switched systems.
Compared with results[ 16 -187, the conditions of
Theorem 1 is not only irrespective of the sizes of the
state delay but also does not impose any restriction
on the derivative of the delay. Different from the Ra-

[13-19-22] "Theorem 1 is estab-

zumikhin-type results
lished by utilizing proofs by contradiction to esti-
mate an integral inequality,and thus leading to sim-
pler stability conditions.

For the constant delay case, condition (7) of
Theorem 1 can be relaxed. That is,if we set () =
7, then we have the following result.

Corollary 1 Consider hybrid stochastic system (2),

if there exist nonnegative functions V; € C*'(R" X
R.; R,) ., positive constants C ;,51 560 5Ciis] F 1,
such that for any x,y € R",i,j € M, the following

conditions hold:

clal*»<vite.n<elal®, (10)

G;(l"yal)<_51 H1Hp+& Hprs (1D

AG (xt) <y lall?.j#1is 12)
N N

&+ D) D) P <é, (13)
i=1j=1.j7#i

where e®= (P, (8)) x«y » then system (2) is pth-mo-
ment exponentially stable.
Proof Choose a Lyapunov function for system (2) :
W () :e;“*’“’ng (x(t),1) ,Where;is a unique posi-
tive solution of ¢ )7 + &, e +
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D 2 euPi® — & = 0. Applying the

same technique used above,we have

EWG) < EW(,) + EJ 0 [(cy — & +

t
o

N N
DY P a7 48 || 2 —

i=1j=1,j#i

O P 1ds < EW ) + (cy —& +

= N t
2 2 C',',jPﬁ(S))EJ eﬂ'\gzo) H x(s) H /)ds_|_
i=1j=1,j%i 1,

ty

sze%E[j ) || 2(s) || ds -+

[

Jﬁe;“"“ | 2(s) || #ds] < [c+ (1—

e/ YIE ¢l 2.

This implies that E || x(¢) || # <

- o ¥/ —
c+ (1 e‘ Ve /}’E |‘g0“f€7mﬂ°)-

The proof is

complete.
3 Application

Some theoretical results of asynchronous Mark-
ovian switching control for a nonlinear hybrid sto-
chastic system are established in the previous sec-
tion. We now apply these results to establish an
LMI-based stability condition and solve the control-
ler design problem for a class of nonlinear stochastic
systems under asynchronous Markovian switching.
The considered nonlinear stochastic systems include
linear systems, recurrent neural networks, some
chaotic systems and so forth, which is given by the
following stochastic differential equations
da () =[Cy (D + Aoy for (x(8) 52) +

Avoio for (xCt —1T)50) +

B, u(t)]dt + g, (2(2)

x(t—o),0)dw(t) .t > ¢,

x, () =¢(s),s € [—1,0].0(2,) =0,

a4
where C;,A,.; A1 € R™ ,and B; € R are known
constant matrices. The control input is constructed
by a mode-dependent state-feedback controller with
delayed switching signal:
u(t) =Ky x(t), (15)
where K; € R" and § > 0.
In the following,we will assume that the non-
linear functions f;(x,t) and g, (x,y,1).i € M, satis-
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fy the following assumptions.

(A1) For each i € ., there exists a matrix L;
with appropriate dimension such that

| fizs)ll < Lzl .VYVx€ R,V ER.

(A2) For each i € ., there exist real matrices
G,; = 0 and G,; = 0 such that

trace[ g/ (x,y.0D g (x,y.0) ] < 2'Gpx +
yGyy. Y,y ER", VYVt € R,
3.1 Mean-square stability criterion

Theorem 2 Consider the Markovian jump sys-
tem (14) with (15) satisfying (A1) and (A2). For
given K; € R and detected delay of switching sig-
nal & ,if there exist positive matrices P; € R” ,and
positive scalars 8,8, ,a; 5 and ¢;,jsi.5 € Myj F il =
1,2,such that (13) and the following LMIs hold:

P, <Bl, (16)
®, 0 P,A,, P, A,
x W, 0 0
Eal il 0 <0, € M,
x % * — a1
an
PB.(K,—K)+ (K; —K)'BIP, —¢,,] <0,
ivj € MyjF#~ i, (18)
where

@, =P.(C.:+B.K,)+ (C.+B.K,)"P,; +B:G +

N
aliLzTL;_‘—a I+ Eﬂ',‘ijv

i=1

U, =—614+BGy +anllL,,

then system (14) with (15) is mean-square expo-
nentially stable.
Proof Define a stochastic Lyapunov function candi-
date V,,, (x()) = 2T (1) P, 2(2) for system (14).
Firstly,we compute G, (x,y,2) along the trajectories
of system (15).

G (x,y,t) =2"(W[P.(C; + BK,) + (C, +
B.K)TP, + Z\:mjpj]x(t) + 22T (WOPA,f: (x.t) +

i
22T (OPAL f(x(t — ) yt) + tracel gf (x (1) yx(t —
DO P g (), 2t — 1)) ]. (19)
Using condition (16) and (A2),we have

trace [ gl (z () ya(t—1) ) P.g; (2 () yx(t— 1),
D] < B DGz (D) +Px" 1 —DGpx (1 — ).

20

On the other hand,it can be deduced from (A1) that
ToAE 2017120 H 24 5% 6

2
0< D[zt —e)DLIL,(t — ) — fT(x(t —

=1

) fila(t—1) ) . 2D
where r; =0 and z, ==.

Applying the inequalities (20) —(21) to (19)
yields

Gi(x,x(t—o).t) < TWEL @) —
SlalI”+& aG—o) "
where £ (1) =col(x () ,alt — ), fi (2 () ,0)
fi(x(t—1),t)) . Then,by (17),we obtain

Grsat—o),0<—& o [ *+& | G —
o | 2.

Next,we calculate AG; (x () ,0).

AG,; (x(),) =2"(D[P,B.(K;, —K,) + (K, —
K)"BIP, —c;Ix(0) +¢; || ) | 2.
that AG; (x(D),1) <

| z(2) || 2. Therefore,by Theorem 1,we conclude

Inequality (18 ) implies

Cy
that the zero solution of system (14) is mean-square
exponentially stable.
3.2 Controller design

Based on the mean-square stability criterion,
this subsection will solve controller synthesis prob-
lem. For this purpose.,assume G, =GIG, i € M=
1,2, and then we introduce two lemmas.

[29] For matrices &/ € R™Y,% € RV,

éi 6 RNXN 9§i :g?ﬁ 0 ’Xi?Hi 6 RHX?'al.:lvza”'vpa
if they satisfy the following inequalities for all i €

{1’°"9p}:

Lemma 1

B+ 3Xod+ (BX, DT (X, — XD + BH,
* — H, — Hf
<0, (22)
then it holds that
B+ BX A+ (BX, DT < 0,i=1,,p. (23)
Lemma 2 [30] For any n X n matrices X > 0,U,
scalar e > 0, the following matrix inequality holds:
UX 'U" ZeU+U") —eX.
Theorem 3 Given the detected delay of switching
signal & ,consider the Markovian jump system (14),
If for some prescribed positive scalars «; and ¢ ,
there exist matrices 0 < X, € R"",K, € R"" ,X, €
R ,and positive scalars ,73’,- J& vay; » and ;,-., sisj € M,
j# i.l=1,2 such that (13) and the following LLMIs
hold:
BI< X, (24)
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i

N
(o, 0 T, Aviay Avias X:9 X% |
x @, 0 0 0
* % —e (X + X7 0 0 0 0
x % * —ayl 0 0 0
x % * * —anl 0 0
* * * * * — A, 0
_* * * * * * 7X—
<0, (25)
(Q, X, — X! +euB.(K, —K) .
! 0 e ; < 0,5 F i,
| * —e, (X0 +X0)
(26)
—& & &7
L * * —%
where

O, —=CX,+XCI'+B,K,+K,"B +7,X,.T, =

X, — X! +e,B K.,
—&1 &LT £ G}

Vo= x  —aul 0 |
i‘éil
G =[G LT I].A =diag(B.al &),
y =diag(Xy, o, X1 Xy X s
y=LA - 7 In]s

Ti - [«/H i1 TCi, i1
=[P (6)
Py (],

"f?/:diag(y1 sNVo s ,yN) s Vi :diag(c‘m 9 9 i1

* *

P, ., P, (6)

Civitl » ™" s Cin ) »

Q; =—2,X, +xc;]1 +B(K, —K) + (K —
KB,
then the admissible controller (15) with K, =K, X"
is mean - square exponentially stabilized system
(14).
Proof Define P,=X," . K, =K, X0 .8 =8 "sas —a;"»
g :571 1 & M, l=1,2. Tt is easy to verify that (24)
and (27) are equivalent to (16) and (13), respec-
tively. Applying Schur complement and Lemma 1,

the matrix inequality (25) implies

@f 0 A().i ;n Al.i(;zi

. * W, 0 0

IS — < 0.,i € M,
* * —alil O
* * * —521.]

(28)
584

where &, = (C; + BK)X, + X, (C; + BK)" +
X,B,Gl,X,+X,al,L;l‘L,‘X,+X;SlX,+

Z;;lnininXi’@i :_§21+§2,81‘G2i gz +

&a,LTL, £,. Then pre-and post- multiplying the
both sides of (28) by diag {P;.&I,a: 1 a1}, (28)
is changed equivalently to (17).

Furthermore, applying Lemma 1 again,and the
inequalities — ¢, ; X . X, <<— 2« X, +«.° ;,-,jI which is
derived from Lemma 2 to (26),we obtain

B,(K;, —K)X,+ X, (K] —K"B —

(XX, < 0.
Multiplying the above inequality to the left and the
right by P; yields (18).

4 Numerical examples

Example 1  Consider the dynamic reliability prob-

lem of multiplexed control system™" .

Controller 1: x; =u, »

Plant: x» = 1.5x, +awa, +1.5x5,

Controller 2: x5 =u, ,
where ay, =0,and u; = —k x) — kyxy suy = —kyxy —
kix;. In practice, the controllers may be failure
which need to maintenance. Therefore,it is assumed
that the failure rate is A and the repair rate is pu(>
A), and the failure process and the repair process are
both exponentially distributed. Then the system can

be modeled as (14) with following parameters (see

[31-32]):
0 0 0
ki ky O
C,=|1.5 0 1.5|,K,=— )
0 /\’.2 kl
0 0 0
0 O 0 _
ki, 0 0
ng 0 0 1 5 9K2f* )
0 ky £k
o 0 0 | -
0 0 0 _ -
kl /32 O
0 0 /A
Lo 0 o0 -
0 0 0 1 0
ki 0 0
C,=|0 0 0|,.K,=— ,B,=[10 0],
0 0 &k
0 0 0 0 1

fi=0.g:=0.i=1.2.3.4,

where the first mode corresponds to the case where
both controllers are good, and the second and third
modes correspond to the case where one of the con-
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trollers fails, and the fourth mode corresponds to
the case where both controllers are failure. The fail-
ure process and the repair process form a Markov

chain with generator

—2A A A 0
n_| # —@A+w 0 A

o 0 —@A+w A

0 iz JZ —2p

The authors of [17] showed that whenA=0. 4,
7 =0.55,k; = 2.85 and k, = 0. 33, the synchronous
state feedback controller u(z) = K,, x(t) stabilized
the system in mean square. Here, we are interested
in that how large detected delay of the controller can
be tolerate to preserve the stability of the system.

Applying Theorem 2 with the same gain matri-
ces and Markov generator, it has been found that
maximum mode delay §is 0. 61. By using the Euler-
Maruyama method"*! with step size 0. 001 and set-
ting initial value 6, =3,¢(s) =[—1, —0.3,0.5]",
the time response of the system is depicted in Fig.
1. Observe that the asynchronous switching control-

ler with & = 0. 61 can guarantee the stability of the

system.
0.5
(a)
0.0
et
-0.5
x,(1)
X,(1)
x3()
-1.0
0 5 10 15 20 25 30
1(s)
5 T T .
(b) — (1)
————— o (1-6)

0 5 10 15 20 25 30
t(s)

Fig. 1 Simulation of Example 1 with 2, = 2.85,k, =
0.33 and & = 0. 61; (a)Sample path trajectories; (b) Switching
signals

Furthermore,in order to show the effect of the
maximum delay of asynchronous Markovian switc-

IEAE 2017128 H 24 K% 64

hing on the stability clearly, assigning that A =
0. 4my sy =0.55m, ,k; = 2. 85 and &, = 0. 33, then for
different values of m,, we calculate the maximum
values of the delay 8. The results are listed in Table
1. It can be seen from the table that when the Mark-
ov switching is slowly switching, the admissible de-
lay of asynchronous switching is large, otherwise,
the allowable delay is relatively small. This is con-
sistent with our intuition. Next, assume that £, =
k, =k, we compute the minimum control intensity k
for various 8. From Table 2, the calculation results
show that the control intensity increases with the
increase of the delay of asynchronous switching.

Table 1 The maximum values of 6 for different x,

o é o 0

0.1 5.72 1.6 0.39

0.3 1. 95 2.0 0. 31
0. 86 3.0 0.21
0.61 5.0 0.13

Table 2 The minimum values of k(k, =k,) for different 6

0 k 0 k
0.05 0.09 0. 25 0.93
0.10 0.21 0.30 1.70
0.15 0.36 0.35 5.48
0.20 0.57 0. 40 —
Example 2 Consider a two dimensional switched
system (14) with following parameters
. 2.23 —1
(/1 — vAm =0 ’
3 —4.92

0.25 0.16 1
Ay = »B, = ’
—0.2 0.51 0
— 0.51 1.23 —1 1
G, = ,Cy, = 7A02:Ov
0.46 —0.4 —2 5
0.1 —0.3
AIZ - ’
0.27 0.18
o — 0.21 0.43
BQ - 9G12 — ’
1 0.40 —0.22

o [ —1 1 } ,
1 —1
filxst) =x,g,(xsy.t) =6151~,i=1,2,and the time
delay of asynchronous switching 6=0. 1. This hybrid
stochastic system is not mean-square exponentially
stable without control input. Qur purpose is to de-
sign a mode - dependent state - feedback controller
(14) to stabilize the system with any constant state
delay. Therefore, applying Theorem 3 with the
choices of k;, =18 ,k, =12,e1; =0. 06,651 =0. 05,¢,, =
585



€5, =0. 01,1t has been found that LMIs (24) —(27)
are feasible,and the corresponding control gain ma-
trices are

K, =[—7.67 —3.39],K,=[0.75 —7.56].

29)

For simulation studies, we use the Euler-Ma-
ruyama method"**! with step size 0.001 and initial
values o, =1,9(s) =[4, —3]",s € [—7.,0]. Then,
the sample path of the solution is plotted in
Fig. 2a—b for z=1 and t =10, respectively. The cor-
responding switching signal is also given in Fig. 2c.
It is seen that the asynchronous switching controller
(14) with gain matrices (29) indeed asymptotically

stabilizes the system with different delays.
6

(@)

'xl(t)

4 x,(1)

x(1)
L=

t(s)

& x,(0)
4 xz(t) 1

0 5 10 15 20 25 30
1(s)

x(1)

0 2 4 6 8

0 5 10 15 20 25 30

Fig. 2 Simulation of Example 2 under asynchronous
switching control; (a)Sample path trajectories forz = 1;

(b)Sample path trajectories for r = 10; (c)Switching signals
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5 Conclusion

By exploring the relationship between the sizes
of detected delay of switching signal and the genera-
tor of the Markov chain,a novel integral-inequality-
estimation technique is developed to deal with time-
varying delay,and some state-delay-independent sta-
bility criteria have been established for hybrid sto-
chastic retarded systems with asynchronous Mark-
ovian switching. It has shown that if the synchro-
nous switched controlled system is pth-moment ex-
ponentially stable, then sufficiently small delays of
asynchronous switching will not destroy the stabili-
ty of the system. Compared with some existing re-
sults on the synchronous switching,our Theorem 1
does not impose any restriction on the derivative of
state delay. As its application, the obtained results
have been applied to design stabilizing mode - de-
pendent controller for a class of time-delay stochas-
tic systems under asynchronous Markovian switc-
hing. Simulation results have verified the effective-

ness of the theoretical results.
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