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Abstract :[Objective]A social-spider optimization algorithm (SSO) is a novel meta-heuristic op-
timization algorithm,it has been widely concerned by scholars in this field since it was put for-
ward,and it had been successfully applied in many fields,but the algorithm is still in the early
stages of the study.,the convergence speed and computational accuracy of the algorithm need to
be improved. [Methods)In order to enhance the convergence speed and computational accuracy
of the algorithm,in this paper.a social-spider optimization algorithm with differential mutation
operator (SSO-DM) had been proposed,and was applied to the function optimization problem.
The improvement involved differential mutation operator. A social-spider optimization algo-
rithm with differential mutation operator (SSO-DM) was validated by five benchmark func-
tions. [Results]Differential mutation operator enhanced the convergence speed and computa-
tional accuracy of the algorithm. [Conclusion]The results showed that the proposed algorithm
was able to obtain accurate solution,and it also had a fast convergence speed and a high degree
of stability.
Key words: social-spider optimization algorithm, differential mutation operator, meta-heuristic
optimization algorithm,functions optimization
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0 Introduction

Swarm intelligence optimization algorithm orig-
inates from the simulation of various types of bio-
logical behavior in nature and has characteristics of
simple operation, good optimization performance
and strong robustness. Inspired by this idea, there
are many bio-inspired swarm intelligent optimiza-
tion algorithms are proposed,such as,ant colony op-
timization (ACO)™, differential evolution (DE),
particle swarm optimization (PSO)™, firefly algo-
rithm (FA)M,
(GSO™ , monkey search (MS)™, harmony search
(HS)M, cuckoo search (CS)Y, bat algorithm

(BA)Y™ et al. Swarm intelligence optimization algo-

glowworm swarm optimization

rithm can solve problems which traditional methods
cannot handle effectively and it has shown excellent
performance in many respects, and its application
scope has been greatly expanded.

The social-spider optimization algorithm is pro-
posed by Erik Cuevas in 2013 ,it is a novel meta-
heuristic optimization algorithm by simulating
social-spider behavior. Social - spiders are a repre-
sentative example of social insects™”. A social-spi-
der is a spider species whose members maintain a
set of complex cooperative behaviors™?. Whereas
most spiders are solitary and even aggressive toward
other members of their own species, social -spiders
show a tendency to live in groups,forming long-last-

[ In

ing aggregations often referred to as colonies
a social-spider colony, each member, depending on
its gender,executes a variety of tasks such as preda-
tion, mating, web design,and social interaction™* "7,
The web is an important part of the colony because
it is not only used as a common environment for all
members,but also as a communication channel™*! a-
mong them. Therefore,important information (such
as trapped prays or mating possibilities) is transmit-
ted by small vibrations through the web. Such infor-
mation,considered as a local knowledge,is employed
by each member to conduct its own cooperative be-
havior,influencing simultaneously the social regula-
tion of the colony"'*’. The SSO algorithm is based
on the simulation of the cooperative behavior of so-

cial-spiders. In SSO algorithm,individuals emulate a
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group of spiders which interact to each other based
on the biological laws of the cooperative colony. The
algorithm is divided into two different search agents
(spiders) : Males and females. Depending on gender,
each individual is conducted by a set of different ev-
olutionary operators which mimic different coopera-
tive behaviors which are typical in a colony. Differ-
ent to most of existent swarm algorithms, most of
swarm algorithms model individuals as unisex enti-
ties that perform virtually the same behavior. Under
such circumstances,algorithms waste the possibility
of adding new and selective operators as a result of
considering individuals with different characteristics
such as sex,task-responsibility,etc. These operators
could incorporate computational mechanisms to im-
prove several important algorithm characteristics in-
cluding population diversity and searching capaci-
ties.

In this paper,a social-spider optimization algo-
rithm with differential mutation operator (SSO -
DM) has been applied to functions optimization. The
improvement involves differential mutation opera-
tor. Differential mutation operator enhances the con-
vergence speed and computational accuracy of the
algorithm. A social - spider optimization algorithm
with differential mutation operator is validated by 5
benchmark functions. The results show that the
proposed algorithm is able to obtained accurate so-
lution,and it also has a fast convergence speed and a

high degree of stability.
1 The SSO algorithm

The SSO assumes that entire search space is a
communal web,where all the social-spiders interact
to each other. In this approach,each solution within
the search space represents a spider position in the
communal web. Every spider receives a weight ac-
cording to the fitness value of the solution that is
symbolized by the social-spider. The algorithm is di-
vided into two different search agents (spiders):
Males and females. Depending on gender, each indi-
vidual is conducted by a set of different evolutionary
operators which mimic different cooperative behav-
iors that are commonly assumed within the colony.

An interesting characteristic of social-spiders is
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the highly female - biased populations. In order to
emulate this fact, the algorithm starts by defining
the number of female and male spiders that will be
characterized as individuals in the search space. The
number of females ( N;) is randomly selected
within the range of 65% —90% of the entire popula-
tion ( N). So, Ny is calculated by the following e-
quation

N; =floor[ (0.9 —rand % 0.25) * N, @D)

Where rand is a random number between [0,
1],whereas floor (. ) maps a real number to an inte-
ger number. The number of male spiders ( N,, ) is
computed as the complement between N and N, . It
is calculated as follows:

N, =N—N,. (2)

The group F stands for female population ( F=
{Fisfase ,ka/ } ), the group M stands for male
population (M = {m; sm, ,***,my }) and the group S
stands for entire population,such that S=F U M.
1.1 Fitness assignation

In the biological metaphor,the spider size is the
characteristic that evaluates the individual capacity
to perform better over its assigned tasks. In this ap-
proach,every individual (spider) receives a weight
(w;) which represents the solution quality that cor-
responds to the spider ( i ) of the population ( S).
In order to calculate the weight of every spider the
next equation is used:

_ J(s;) — worst,

(3

i

best, — worst,

Where J (s;) is the objective function value of
the social - spider individual (s;). The values of
worst, and best, are defined as:

best,=max (J(s,)) and worst, =min (J (s;)).
k€{1,2,+,N} kE{1,2,,N}

(4)
1.2 Modeling of the vibrations through the commu-
nal web
The communal web is used as a mechanism to
transmit information among the colony members.
This information is encoded as small vibrations that
are critical for the collective coordination of all indi-
viduals in the population. The vibrations depend on
the weight and distance of the spider which has gen-
erated them. Since the distance is relative to the in-
dividual that provokes the vibrations and the mem-
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ber who detects them, members located near to the
individual that provokes the vibrations, perceive
stronger vibrations in comparison with members lo-
cated in distant positions. In order to reproduce this
process, the vibrations perceived by the individual ¢
as a result of the information transmitted by the
member j are modeled according to the following e-
quation;

Vib,; =w; * e &P

Where d,,; is the Euclidian distance between the
spiders i and j, such thatd,,; = Il s; —s; | . Although
it is virtually possible to compute perceived vibra-
tions by considering any pair of individuals, three
special relationships are considered within the SSO
approach

(D Vibrations ( Vibe; ) are perceived by the in-
dividual i (s;) as a result of the information transmit-
ted by the member ¢(s.) who is an individual that
has two characteristics: It is the nearest member to ¢
and possesses a higher weight in comparison to i
(w. > w;).

Vibe, =w, * ¢ i . (6)

@ Vibrations ( Vibb, ) perceived by the individ-
ual 7 as a result of the information transmitted by
the member b (s, ) ,with b being the individual hold-
ing the best weight (best fitness value) of the entire

population S ,such that w, = max (w,).
k€ {1,2,-,N}

Vibb, =w, * e ‘s (7

@ Vibrations (Vib f,) perceived by the individu-
al i(s; ) as a result of the information transmitted by
the member f(s,;) ,with f being the nearest female
individual to i.

Vib f,; :u{,»*ef‘]"z'/. (8
1.3 Initializing the population

The SSO is an iterative process whose first step
is to randomly initialize the entire population (fe-
male and male). The algorithm begins by initializing
the set S of N spider positions. Each spider position,
fiorm,, is an n -~dimensional vector containing the
parameter values to be optimized. Such values are
randomly and uniformly distributed between the
pre-specified lower initial parameter bound ( p¥* )
and the upper initial parameter bound (p¥*"), just
as it is described by the following expressions:
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Py smy,; =

[l =p +rand(0 1) * ([)}”*h
pie Jrmnd(O 1) * (p'““’ — p","“‘). (9

k=1.2. N, 5j=1.2
Where i,j and % are the parameter and individu-
al indexes respectively whereas zero signals the ini-
tial population. The function rand (0,1) generates a
random number between 0 and 1.
1.4 Cooperative operators
1.4.1

In order to emulate the cooperative behavior of

Female cooperative operator

the female spider,a new operator is defined. The op-
erator considers the position change of the female
spider i at each iteration process. Such position
change, which can be of attraction or repulsion, is
computed as a combination of three different ele-
ments. The first one involves the change in regard to
the nearest member to i that holds a higher weight
and produces the vibration ( Vibc; ). The second
one considers the change regarding the best individ-
ual of the entire population ( S) who produces the
vibration ( Vibb; ). Finally, the third one incorpo-
rates a random movement.

Since the final movement of attraction or repul-
sion depends on several random phenomena, the se-
lection is modeled as a stochastic decision. For this
operation,a uniform random number ( r,, ) is gener-
ated within the range [0,17]. If »,, is smaller than a
threshold ( PF ),an attraction movement is genera-
ted; otherwise,a repulsion movement is produced.

Therefore, such operator can be modeled as follows:

f?‘l —

Fidax Vibe, * (s, — f1) +BxVibb, * (s, — f}) +
8% (rand — )57, < PF
fi—axVibe, x (s.— f1) —pxVibb, * (5, —
1 +6% Gand =) s, > PF
(10)

Where a,8,8 and rand are random numbers be-
tween [0, 1], whereas b represents the iteration
number. The individual s, and s, represent the nearest
member to 7 that holds a higher weight and the en-
tire population ( S ) ,respectively.

Under this operation, each particle presents a
movement which combines the past position that
holds the attraction or repulsion vector over the lo-
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cal best element (5. ) and the global best individual
(s, ) seen so-far. This particular type of interaction
avoids the quick concentration of particles at only
one point and encourages each particle to search a-
round the local candidate region within its neighbor-
hood (s, ), rather than interacting to a particle
(s, ) in a distant region of the domain. The use of
this scheme has two advantages. First, it prevents
the particles from moving towards the global best
position, making the algorithm less susceptible to
premature convergence. Second, it encourages parti-
cles to explore their own neighborhood thoroughly
before converging towards the global best position.
1.4.2 Male cooperative operator

According to the biological behavior of the so-
cial-spider, male population is divided into two clas-
ses:Dominant and non-dominant male spiders. Dom-
inant male spiders have better fitness characteristics
(usually regarding the size) in comparison to non-
dominant. Dominant males are attracted to the clo-
sest female spider in the communal web. In con-
trast ,non-dominant male spiders tend to concentrate
on the center of the male population as a strategy to
take advantage of resources that are wasted by dom-
inant males.

For emulating such cooperative behavior, the
male members are divided into two different groups
(dominant members D and non-dominant members
ND ) according to their position with regard to the
median member. Male members, with a weight value
above the median value within the male population,
are considered the dominant individuals ( D). On
the other hand, those under the median value are la-
beled as non-dominant males ( ND ). In order to
implement such computation, the male population
(M= {m,my,

their weight value in decreasing order. Thus,the in-

smy | ) is arranged according to

dividual whose weight (w;\:f+,],) is located in the
middle is considered the median male member. Since
indexes of the male population in regard to the en-
tire population are increased by the number of fe-
male members ( N, ) ,the median weight is indexed
by ( N/, ). According to this, change of positions
for the male spider can be modeled as follows:
mit =
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. ' 1
mt +ax Vibf, * (s, —mi) + 8 % (rand *?)
WN = WNpy, 3
N 11
& li’llnﬁ X WN,, & ab
: 2 = e
n; +ﬂ’ * ( Z\ - m,‘)
,,,
he1 WNpy,
WN < WN oy ®

Where the individual (s, ) represents the nea-
rest female individual to the male member i ,where-
as ( Eh\yﬂmﬁ * ww‘mz/z;?flw,\,m ) correspond to
the weighted mean of the male population ( M ). By
using this operator,two different behaviors are pro-
duced. First,the set ( D) of particles is attracted to
others in order to provoke mating. Such behavior al-
lows incorporating diversity into the population.
Second, the set ( ND ) of particles is attracted to
the weighted mean of the male population ( M ).
1.5 Mating operator

In SSO algorithm, Dominant members ( D)
and female spiders perform the mating operation.
Each male spider has a specific mating radius (r ),

which is defined as:

n
high _ plow
2 b; bj

= 12
r 5 (12)

During mating. the weight of spiders involved
in mating that can affact the quality of the next gen-
eration of spiders. The influence probability ( Ps; )
of each spider is assigned by the roulette method,
which is defined as follows:

w;

ij.

jeT®

Ps, = (13)

If the weight of the newly formed spider is
greater than the lightest spider of the previous spi-
der population,the new spider will replace the ligh-
test spider in the spider population. Instead, the new
spider will be abandoned and the spider population
will not change.

1.6 Computational procedure
The computational procedure for the algorithm

can be summarized as follow:

The Social - spider optimization algorithm
(SSO)
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Step 1: Think N as the total number of n -di-
mensional colony members, define the number of
male spiders (N,,) and female spiders (N,) in the
entire population (S).

N, =floor[ (0.9 —rand * 0.25) * NJ,N,, =
N—Ny,,

Where rand is a random number between [0,1 ],
whereas floor (. ) maps a real number to an integer
number,

Step 2:Initialize randomly the female (F={f,,
fosrs S, })smale (M = {m; ym,,*+smy }) mem-
bers (where S = {s; = f1,s; = f» stteSN, = fN/ ,

SN +1 — My ’SN/+2 — My e°** 7SN - m}\’”, }) and CalCulate

f
the radius of mating.

ji=1
2n
Step 3: Calculate the weight of every spider
of S.
For (i=1;i << N-+1;i+)

J(s;) — worst,
W; — )
best, — worst,

r =

where  best, =

max (J(s,)) » worst, =min (J(s,)),
kE€{1,2,...,N} k€E{1,2,... N}

End for

Step 4:Female spider’s movement according to
the female cooperative operator.

For (i=1;i< N, 4 13i+)

Calculate Vibc,; and Vibb;

If (r, <<PF);wherer, € rand (0,1)

= 4 axVibe,x (o —  f) A+
B*Vibb, * (s, — f*) + 6% (rand _%)’
Else if

= Y — axVibe, % (s, — ff) —

B Vibh, * (s, — f1) + 8% Grand —%),

End if
End for

Step 5:Move the male spiders according to the
male cooperative operator.

Find the median male individual ( WN 4 ) from
M.

For (i=1;: <N, +1;37+)

Calculate Vib f,

If Cwy i > wn o)

mt =ml faxVibf, * (s, —m!) + 0+
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(rand — %) ,

Else if

End If
End for
Step 6:Perform the mating operation
For (i =13 {<N,, +1;i+)
If (Cm, € D)
Find E’
If ( E'is not empty)

From s,., using the roulette

method
I Cwye => W )
Sew = Suew
End If
End if
End if
End for

Step 7:if the stop criteria is met,the process is

finished;otherwise,go to Step 3.

2 Differential mutation operator-based social

spider optimization algorithm (SSO-DM)

2.1 Differential Mutation operator (DM)

The differential evolution (DE) developed by
Storn and Price, is a stochastic search algorithm
based on population cooperation and competition of
individuals and has been successfully applied to
solve optimization problems particularly involving

non-smooth objective functions™"?*

. The optimiza-
tion process in DE is carried out by combing the
simple arithmetic operators with the classical evolu-
tion operators of mutation, crossover and selection
to evolve from a randomly generated population to a
final solution. The differential mutation operation is
defined by [23].
=2l A=Y) X (& —a) FY X (2 —2)
a4
Where j./,g and m are random integers uniformly
selected from the set X = {x1,25,...,x,) and
i # j #l % m # g, in other word the indices are
mutually different. Y is defined by
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k max

where %, is the current iteration and k., is the

Y= , (15)

number of maximum iterations.
2.2 The flight characteristics of social spiders

The flight (ballooning) is properties of many
social spiders. Social spiders can achieve rapid diffu-
sion by means of flight behavior at a certain stage.
The flight is an important way to realize long dis-
tance diffusion of spiders,the flight distance some-
times can reach hundreds of kilometers. This is also
the main reason for the rapid spread of social spi-
ders. Inspired by this feature,assume that social spi-
ders sometimes change their position according to
this characteristic.

2.3 The necessary properties and theoretical analy-
sis of the SSO-DM algorithm

(A) The necessary properties (The flight char-
acteristics of social spiders)

The article uses differential mutation operator
to simulate the flight characteristics of social spi-
ders. Suppose that each female social spider has
flight characteristic, the calculation formula of the
position change of the flying characteristic of the fe-
male social spider is as follows:

=4+ A=Y)X(fi— i) +Y X
s =1, (16)
Where j./,g and m are random integers uniformly
selected from the set F = {f1,fs," ,fN/ } and
i % j #l+%* m # g, in other word, the indi‘ces are
mutually different. Y is described in Eq. (15).

Because the flight characteristics of social spi-
ders are shown in a stage, defining a random
number- Z and a threshold value- R. Where, Z is a
random number between[ 0,1 ], R is a constant with
a value of 0. 5. When R <C Z, female social spiders
perform the operation of the flight characteristics,
otherwise,female social spiders perform the opera-
tion of the original algorithm.

(B) Theoretical analysis of the SSO-DM algo-
rithm

In SSO-DM algorithm,the parameter ( Z ) that
controls variables for the flight characteristics of fe-
male social spiders,it always obliges the female so-
cial spiders to take random executes the operation of

Guangxi Sciences, Vol. 24 No. 3,June 2017



the flight characteristics, which greatly enhances
population diversity in the algorithm and promotes
exploration of the search space that leads to find di-
verse solutions during optimization. This mechanism
is very helpful for resolving local optima stagnation
even when the SSO-DM algorithm is in the exploita-
tion phase.

The proposed SSO-DM consists essentially in a
strong co-operation of the two evolutionary algo-
rithms. The main difference with SSO is in the mu-
tation operation. This efficient combination strategy
of DM and SSO improves the global search capabili-
ty,avoiding convergence to local minima and accel-
erates the convergence. The SSO-DM can be sum-

marized as follow (Fig. 1) .

Social-spider optimization algorithm with dif-

ferential mutation operator (SSO-DM)

Step 1 — Step 3: The same as the original algo-
rithm.
Step 4: Female spider’ s movement according to
the female cooperative operator.
For (i=1;i << N, + 137+
Calculate Vibc,; and Vibb;

Create Z as a random number in range (0,1)

1f Z<<0.5
A=A 4+A-Y) X —f)+Y X
=1
Else
If (r,, << PF );wherer, € rand(0,1)
=+ axVibe, % (s, — ) +
B*Vibb, x (s, — 1) + 06 * (rand — %) ,
Else If
= — axVibe, x (s, — f¥) —
B*xVibb, x (s, — 1) + 0 * (rand — %) ,
End If
End If
End For

Step 5— Step 7:The same as the original algorithm.

FEASE 201746 A H245% 3H

Set parameters and initialize
the population

v

Assign weight to spider

A

Female spider individual The female spider individual
executive fight operation performs the original operation

v v

Male spider individual perform
location update operation

v

Execute mating operation and
update operations on individual

Satisfy
condition ?

No
The output of the optimal value

Fig. 1 The flow chart of SSO-DM algorithm

3 Simulation experiments and result analysis

In this section, five standard test functions™"

are applied to evaluate the optimal performance of
SSO-DM. The space dimension, scope and optimal
value of five functions are shown in Table 1. The se-
lected benchmark functions can be divided into two
categories (i. e. ,unimodal benchmark functions and
multimodal benchmark functions). They are f, ~ f
for unimodal benchmark functions, f, and f; for
multimodal benchmark functions.
3.1 Experimental setup
All of algorithms were programmed in MAT-
LLAB R2012a, numerical experiment was set up on
Inter (R) Core (TM) i5-4590 CPU and 4 GB
memory.
3.2 Comparison of each algorithm performance
The proposed SSO-DM algorithm is compared
with some swarm intelligence optimization algo-
rithms, such as, SSO, ABC, BA, GGSA and DE,
253



which use the mean and standard deviation to com- T ——-ABC
. . ~6 S —DE
pare their optimal performance. The parameters set- S BN - —-ggGgsA
X ~ - =+ - §50-DM|
. . . Zs .
tings of algorithms are as follows. For all the opti- g %
. . . . . T4} \
mization algorithms,Population size N =50,and the 2 |\ N
O 3N ™
. . . . = - 1
iteration number is 1 000. 30 independent runs were = | N\ .
ool w_ %
. . . o0 . A
made for the six algorithms, the results obtained by g 1LoN .
> 1 Uy s,
six algorithms are presented in Table 2,and the evo- = o SN N
e g T T
. . . ., 10° 10’ : 10°
lution curves and the variance diagram of /', /5, f5, Iterations
f1sf5 obtained by six algorithms are presented in Fig. 212OD'm:30’eV°1”“0n curves of fitness value for £,
. . ) - - —ABC
- o —Ba
Fig. 2—6 and Fig. 7—11,respectively. L2
) ) ) 100 GGSA
Table 1 Unimodal and multimodal benchmark functions 2 S50
. S 80f
Functions Dim Range fmin @
o
. n £ 60
N = >0 2 30 [—100,100] 0 &
]
o0
(@) =maxi{ |z ], 1<i<n} 30  [—100,100] 0 g 40
>
. NV <
fi = 257 i+ 30 [—1.28,1.28] 0 20
random[0. 1)
‘ 0 .
g ) — " 2 . 0 1 2 3
fi@) = 20 Lal = 10e0s 3y 5 p50] g i S 10
(271.1.[) + 101 terations
Fig.3 Dim=30,evolution curves of fitness value for f,
fs(x) = — 20exp (— 0.2 N
120
I < B
NEDNRED exp 3 [—32,32] 0 -
1 n 2
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i
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Table 2 Simulation results for test unimodal benchmark func- =
[}
tions & 40
5
>
Functions Dim  Algorithm Best Worst Mean Std. < 20
f1 30 ABC  3.69E—08 2.32E—06 5.34E—07 5.40E—07 .
BA 4.58E+02 5.79E403 3.13E+03 1.39E+03 0.7 [ o0
. . ITterations
GGSA  4.45E—20 4.17E—19 1.72E—19 9.49E—20
DE 7.32E+01 1.54E+03 5.50E+02 3.37E+02 Fig.4 Dim=30,evolution curves of fitness value for f;
SSO 8.63E—02 8.63E—02 8.63E—02 0 450
SSO-DM  3.53E—67 3.53E—67 3.53E—67 2.01E—82 400 1
f2 30 ABC  5.96E+01 7.39E+01 6.78E+01 3.62E+00 © 350 :
BA 1.29E+01 6.89E+01 5.60E+01 6.54E+00 S 300 ]
GGSA  5.25E—10 1.96E—09 1.24E—09 4.,04E—10 2 250 ]
DE 7.38E+00 2.41E+01 1.48E+01 4.39E+00 £
Z 200
SSO  1.47E—01 1.47E—01 1.47E—01 5.56E—17 % 150 |
SSO-DM  1.20E—37 1.20E—37 1.20E—37 2.12E—53 5 160
5 ]
I3 30 ABC  4.19E—01 1.02E+01 7.09E—01 1.58E—01 < K
BA 6.93E—03 2.09E—2 1.23E—02 3.65E—03
GGSA  3.90E—03 1.39E—01 1.73E—02 2.37E—02 050 10' . 10° 10°
Iterations
DE 1.75E—02 3.25E—01 1.27E—01 8.00E—02
o) 1.68E—02 1.68E—02 1.68E—02 0 Fig. 5 Dim=30,evolution curves of fitness value for f,
SSO-DM  1.22E—04 1.22E—04 1.22E—04 5.51E—20 30
fi 30 ABC  1.02E+00 1.16E+01 5.47E+00 2.90E+00 g5
BA 1.48E+02 2.51E+02 1.99E+02 2.63E-+01 2
GGSA  7.95E+00 2.38E+01 1.60E+01 4.57E+00 E 20\ N ===
DE 3.43E+01 1.99E+02 1.14E+02 4.99E+01 ﬁls \_‘:{\ D
SSO  6.33E+01 6.33E+01 6.33E+01 0 £ Ry
SSO-DM 0 0 0 0 %10 M,
1 30 ABC  9.16E—05 1.58E—03 4.79E—04 3.79E—04 5 . !
BA 1.85E+01 1.99E+01 1.90E+01 2.50E—01 <s -1
GGSA  1.48E—10 5.26E—10 3.09E—10 7.42E—11 P
- 10° 10’ 1
DE 1.44E—15 1.08E+01 6.46E+00 2.01E+00 Iterations
S50 3. AZE0L 3 1ZE01 3. 12E01 5. 6517 Fig. 6 Dim=30,evolution curves of fitness value for f;
SSO-DM 4. 44E—15 4.44E—15 4. 44E—15 0

254 Guangxi Sciences, Vol. 24 No. 3,June 2017



6000

5000

4000

[ 5] w
(=3 (=3
(=3 (=3
(=) (=)

Fitness value

—_—

=

Fig. 7 Dim=30,variance diagram of fitness value

for f;

ABC BA

DE GGSA SSO SSO-DM
Algorithms

70

60
250
E)
g 30
£ 20

ik

= :

Fig. 8 Dim=230,variance diagram of fitness value for f,

ABC BA

DE GGSA SSO SSO-DM
Algorithms

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Fitness value

—_—

+

i —_—

Fig. 9 Dim=30,variance diagram of fitness value for f;

ABC BA

DE GGSA SSO SSO-DM
Algorithms

250

—_ — o
(=} wn (=}
[} = L=}

Fitness value

W
S

—_

% - -

Fig. 10 Dim=30,variance diagram of fitness value

for £,

ABC BA

DE GGSA SSOSSO-DM
Algorithms

20
18
16
14
12
10

8

Fitness value

SIS

=

—_—

+ —— i [—

Fig. 11
for f5

ABC BA

Dim=30.variance diagram of fitness value

I EASE 2017 %6 A

DE GGSA SSO SSO-DM
Algorithms

%24 K% 3

3.3 Result analysis

Seen from Table 2, in unimodal benchmark
functions, SSO-DM can get a better optimal solution
for f1,f, and f5 and has a very strong robustness.
For the test benchmark functions, standard devia-
tion of SSO-DM is less than that of other algo-
rithm. And this means that in the optimization of u-
nimodal function, SSO-DM has better stability. Sim-
ilarly,seen from Table 2,SSO-DM can find the opti-
mal solution for f,.and the standard deviations are
zeros. For f,, f5 »the precision of mean fitness val-
ue, best fitness value, worst fitness value and stand-
ard deviation of SSO-DM are better than other algo-
rithms. These results mean that SSO-DM has a
strong searching ability and a great stability for sol-
ving multimodal function optimization. Fig. 2 — 6
show the evolution curves of fitness value for f,,
f2sfssfisfs5. From these Figs, we can easily find
that SSO-DM converges faster than other population
based algorithms mentioned above, and the values
obtained by SSO-DM are closer to the optimal value
of benchmark functions. These show that SSO-DM
has a faster convergence speed and a better precision
than SSO and other population based algorithms. In
sum, proposed SSO-DM is an algorithm with fast
convergence speed, high level of precision and a
great performance of stability.

Another finding in the results is the poor per-
formance of ABC and BA. These two algorithms be-
long to the class of swarm-based algorithms. In con-
trary to SSO-DM algorithm, there is no mechanism
for significant abrupt movements in the search space
and this is likely to be the reason for the poor per-
formance of ABC and BA. It is also worth discussing
the poor performance of the DE algorithm in this
subsection. Generally speaking, the DE algorithm
has been designed based on mutation mechanism.,
mutation in evolutionary algorithms maintains the
diversity of population and promotes exploitation,
but due to the influence of the choice operation, the
individual differences will gradually decrease with
the increase of the number of iterations,at the same
time, the decrease of individual difference also af-
fects the diversity of the variation, which leads to
the premature convergence of the algorithm, which
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is one of the main reasons for the poor performance
of DE.

The reason for getting better fitness value pro-
vided by the SSO-DM algorithm is that this algo-
rithm is equipped with the parameter ( Z ) that con-
trols variables for the flight characteristics of female
social spiders,it always obliges the female social spi-
ders to take random executes the operation of the
flight characteristics. This promotes exploration of
the search space that leads to find diverse solutions
during optimization. In addition, two thirds of the
individuals in the SSO-DM algorithm are devoted to
exploration of the search space and the rest to ex-
ploitation. This design guarantees the balance be-
tween exploration and exploitation. This is also a
reason why the proposed algorithm always guides
search agents to exploit the most promising regions
of the search space, which also assist this algorithm

to provide remarkable results.
4 Conclusions

In order to overcome the disadvantage of stand-
ard social-spider optimization algorithm, differential
mutation operator has been incorporated into the
SSO to generate a social-spider optimization algo-
rithm with differential mutation operator for func-
tion optimization. Differential mutation operator en-
hances the diversity of the population, which helps
to improve its exploration ability. From the results
of the five benchmark functions, the performance of
SSO-DM is better than,or at least comparable with
other population-based algorithm mentioned in this
paper. SSO-DM has a fast convergence speed,a rela-
tively high degree of stability and it is also much

more accurate in precision.
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