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Abstract: : The number of limit cycles of a Z;-equivariant cubic Hamiltonian system under Z,-equivari-

ant quartic perturbations was studied using the methods of Hopf bifurcation theory. The results show

that the perturbed system can have 6 small limit cycles.
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It is well known that the second part of Hilbert 16th
problem concerns the maximal number and relative posi—
tion of limit cycles of the planar polynomial vector
fields. There have been many studies on obtaining more
limit cycles and various configuration patterns of their
relative dispositions. The problem is so hard that it has
not been solved completely. To reduce the difficulty one
can study the systems with some symmetry. An important
symmetry is the Z, -equivariance which was first intro—
duced in reference 1 . From then on Yu et al > proved
that a cubic Z;-equivariant system can have 1 limit cy-
cle. Yu et al * proved that a cubic Z,-~equivariant system
can have 3 small limit cycles and 1 big limit cycle.
Zhang et al * found a quartic system have at least 15
limit cycles.

Using the Hopf bifurcation method we study the bi—
furcation of limit cycles in the following cubic Z,-quintic
Hamiltonian system perturbed by quartic Z,-equivariant

polynomials
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x:Hy +e Py(xy) }}:_Hx +& Q(xy)
(0.1)
where ¢ is nonnegative and small and find the perturbed
system can have 6 small limit cycles.
1 Preliminary definitions and lemmas
When ¢ =0 formula( 0. 1) is a Hamiltonian system

with Hamiltonian function

2+Ly4—ix3+

H(x y) =xp® + ~ay A 3

2
L 4
—x".
( P(x y) Qux y) ) is the quartic polynomial vector

. . . 27 . .
invariant under rotation of 3 with respect to the origin

we know that( P,(x y) Q,(=x
y) ) is respectively the real and imaginary part of the

O. From reference 1

following complex function

F(zz)=(A, +A, | z1%)z+ (A, +
Al 2172 + A7
where A, =a, +ib, k=012 .-
iy . It is direct that

Py =apx + (2" +2°)a, + (' = y")a, +
(=" +a)ay + (=62 +y" +a')ay —byy +
(=o'y =y") by + 2byxy + (207y + 2xy") by +

5z=x+iy z=x-—
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(4xy’ — 4x’y) b,

Qv =agy + (¥ +a'y)ay = 2axy + (- 227y -
2xy’) ay + (= 4xy’ + dd’y) ay + box + (wy" +
x3)b1 +(x2 _yz)bz +(_y4 +x4)b3 +(—6x2y2 +
y4 + x4) by.

Consider the following near-Hamiltonian system

x=H(xy) +eplxyd) y=-H(xy) +¢
oy o) (11)
where H(x y) p(x y 8) and g(x y §) are analytic
functions & =01is small andd € D C R" is a vector pa—
rameter with D compact. When & =0 system( 1. 1) be-
comes a Hamiltonian system of the form

i=H, y=-H, (1.2)

Suppose that system( 1.2) has a homoclinic loop L,
defined by the equation H( x y) = 8. Then there exists
an open interval (o B) with h = 8 as its endpoint such
that the equation H(x y) = hforh € (a B) defines a
family of periodic orbits L, of system( 1.2) . Further sup-
pose that the limit of L, ash—a(h € (a B)) is a cen—
ter C(x, y,) denoted byl =(x, y,). Thena=H(x,
y,) - Let

M(h 6) =j£b"qu—pdyh e (ap)

which is called a Melnikov function. Let

plx y 8) = Y ax'y glx y8) =Y bu'y.

i+=0 i+=0

(1.3)

(1.4)
Then from references 5 6  we have
Lemma 1.1°  Let M( h 8) be given by formula
(1.3).Then
M(h ) =c, +O(1)
for0 <l h-Bl<landh € (a B) near the homoclinic
loop L,

() = M(0 6) = | gdx = pdy 1, ...
(i) The Melnikov function M( h

where
(1.5)
Lemma 1.2 °
8) has the form
M(h 8) =Y b(h-a) ™ for0 <l h-al<l
he(ap (1.6)

near the center L, = (x, v,) where b, is the function of

the relevant coefficients. ( ii) Further suppose

Hx ) = e+ 2 ((x = x)" + (v = 0)7) +

2 hilx =) (y =y
P + q\ = 2 i+j2(]cij( X = xz‘) i( Yy~ yr) j'
Then

By =2mcy Byl o= cyom( hyy + 3hy) -
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com( hy + 3hy) + ey + e

B, | By=0 = ey + oAy Fepdy + Ay Ay
= cym( hyy + Shy) —cpm( hy +hy) -
enm( hy +hy) —cum ( hy +5hy) +mey, tme, +
L?T c
3 2
with

Ay = 357hyohyy + S( hiyhey + hiyhyy + hohy +
hoshis + hyghy) + 37(hyyhy + hyshy + heshy, +

h04h30) - %W( h?Z * 3h’(2)3h30 + 3h?2h‘30 + 3h;lh’IZ *

Ohiyhy hgy + Ohoshy hy)
105 35
777}@0 - 777( hézhlz + h§1h30 + h§0h12)

Aoy = 357hgshy, + Sm(hyhy + hythg, + highys +

h30h’31 + h03h22) + 37T( h21h22 * h12h31 + h30h13 +

- 77( hy, + hsz + Shso) -

h40h03) - %77'( h‘;l + 3h§0h03 + 3h§1h03 + 3h’TZhZI +

6hyhy hyy + 6hgshishyy) = m(hy + hyy + Shys) =

105 35
777,133 - ?77'( hgohn + h?zh(n + hg3h2l)
Ay = 327577%0 + %77'( hés + h;l + 2h,hy) +

3
?77'( h?z + 2h03h21) - 77'( ho4 + hy + 5h4o)

Ay :577'( hosh, +h30h21) + 377( hoshs +h12h21) -

77( h|3 + h’}l)
Ay = 32£Wh§3 + %77'( hio + h%z + 2hy hy) +

3
?77'( hil + 2h30h12) - 77( h40 + hy + 5h04) .

Following the idea used in reference 7 we have
immediately the following Lemma of which the proof is
not difficulty and we omit it.

Lemma 1.3 Let formula( 1. 5) and formula
(1.6) hold

By(68,) =B,(8,) =0 B,(8,) #0 ¢(8,) #0

suppose there exists §, € D such that

and

=2.

rank

AR B)

a8 & =+ 8,)

Then there exist some ( & 8) near (0 §,) such that sys—

1 — sgn( ¢y 8,) By 8) )
2

two of which are near the

tem( 1. 1) have 2 + limit cy—

cles in the homoclinic loop L,

center.

2 Main result
Theorem 2.1 Taking allb, =0 i=01 -+ 4

there exist some {a, @, *** as} such that the system
(0.1) has 6 small limit cycles for & positive and very
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small and the configuration of these limit cycles is

shown in the Figure 1.
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Fig. 1 Distribution of 28 limit cycles of formula( 0. 1)

Proof We first study the portrait of the Z,-equiva—
riant system ( 0. 1) with £ =0. The Z;-equivariant system
(0.1) with & = 0 has a compound cycle denoted by I
consisting of 3 homoclinic loop L, L, L; defined by
H(x y) =0 and there is a center C; in every L, defined

1 1 J3 1
byH:_E where C,(1 0) Cy( ) g) Cyf Y
- ?) then we have

1 .
M(h 5)=£q4dx—p4dyhe(—a 0) i=1

23

where 8 = (a, a, =+ a5 b, - b;) e R".By Z,-equ—

ivariance M,(h 8) =M,(h 8) =M ( h &)

ly study M,(h 8) .By Lemma 1.1 we have
M(h 8) =c, +0(1)

forO < — h <1 near the homoclinic loop L, .
By formula( 1.5) with the help Maple 13 we can

we can on—

directly have

8 32 128 512
— + 2 + +
277 Y0 T g™ M T 309 % T gng

Cy —

T Qy.

(2.1)

So we have
1 k+1
M(h = b(h+— 0<lh-alxl
1( 5) g() A( 12) < o

he(ap
near the center C(1 0). In order to find b,(8) i = 012

we move the center C;( 1 0) into the origin by lettingu = x —

3

lv= 3y ie. x= %u+1y= 37 and make the time

rescaling d7 = /3dr so that the system (0.1) becomes

dfu:dHi+g (u v) @=—dH§+g (u v)
dr dv Pr dr u %

(2.2)
where

(4 1
H](LL U) :H(x y) |{x:u+l y:;v} =Z u’4 +

2012 5 19 2

L ot + — ot +%u3 +luv2 + —u’ +iv2 _ L
6 36 3 3 2 2 12
3
Pl 0) = L2000 ety ) =
! |
?q(x y) (X=u+l)=%7}‘
Let
le(h5)=3€ gdu —pdv = 3 b (h +
Hi(u v) =h k=0
L k+1
12)

which is the Melnikov function of the new system ( 2.
2) .So we can use the formula in Lemma 1.3 for the

Hopf coefficients b, (8) b, (8) b, (8) . We obtain

b (8) =3/ Fay + Sm /B, 4 B
On/3a,

b (8) 1450 == w3, ~ 47 /3a, -
16 7/ 3a,

b(8) 1y 0 == /By = 2w, -

”;iwﬁa4.

Note that
u v) _ _ .
det =/3 andk=./3 we can find M,( h
a(x y)
8) =M(h 8).

Therefore

By( 8) =%7T«/§a0 + %ﬂﬁal + %Wﬁ% +
Onfa,
_ 16
By(8) 4,0 =— ?Wﬁal -4a7/3a, -

1673 a,
784 52
Bz( 5) |30=0 == ?W\/gal - ?77\/?7% -

m;—gwﬁ% (2.3)
Solve the equation
By(8) =B,(08) =0
we have
a =—ia a =La —La
I 5 o @4 = 57 dg T
We take § ={a, a, a, a; a,} as well and§, ={a, -
S o ar %ao - $a3} by formula( 2.1) and

( 120 Continue on page 120)
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9 ivariant polynomial vectorfields with degree 3 or 4 J . ]
40 Math Anal Appl 2006 322: 51-65.
\/37% col 8o) = oo maq- . S ]
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a( B, B)) J . Chaos Solitons and Fractals 2004 22:1127-1138.
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I ay a; ay ay)
by the lemma 1.3 there are 2 limit cycles near the cen—
ter C, and considering the system is Z,-equivariant we

have got 6 limit cycyles bifurcated from the centers.
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