平方数集合的五分拆问题有解的充要条件*

Necessary and Sufficient Conditions for Solved Problem of Five Partition of Square Number Set

罗益奎

LUO Yi-kui

(广西机电职业技术学院,广西南宁 530007)

(Guangxi Technological College of Machinery and Electricity, Nanning, Guangxi, 530007, China)

摘要: 证明平方数集合的五分拆问题 $R_5(n)$ 有解的充要条件是 $n \equiv 0, 2, 4 \pmod{5}$ 且 $n \neq 2, 4, 5, 7, 9, 10, 12, 14, 15, 17, 22.$

关键词:平方数 集合 充要条件 &分拆

中图法分类号:O156 文献标识码:A 文章编号:1005-9164(2012)01-0035-05

Abstract: The necessary and sufficient condition for the solved problem $R_5(n)$ of square number set is proved to be $n \equiv 0, 2, 4 \pmod{5}$, but $n \neq 2, 4, 5, 7, 9, 10, 12, 14, 15, 17, 22$.

Key words: square number, set, necessary and sufficient condition, k partition

我们称集合 A 的元素数之和为集合 A 的容量,记为 [A]. 集合 $M=\{1^2,2^2,\cdots,n^2\}$ 的 k 分拆问题 $R_k(n)$ 是指将集合 $M=\{1^2,2^2,\cdots,n^2\}$ 分拆成 k 个子集 A_1,A_2,\cdots,A_k ,且满足条件:

- $(1)M=A_1 \cup A_2 \cup \cdots \cup A_k$,并且 A_1,A_2,\cdots,A_k 两两互不相交,
- (2) 集合 A_1 , A_2 , \cdots , A_k 各自的元素数之和相等,即各自的容量之和相等 $\lceil A_1 \rceil = \lceil A_2 \rceil = \cdots = \lceil A_k \rceil$.

显然,若问题 $R_k(n)$ 有解,则必有 $[A_i]=\frac{n(n+1)(2n+1)}{6k}, i=1,2,\cdots,k$. 2006年阴洪生[1] 研

究了平方数集合的二分拆问题,并给出了 $R_2(n)$ 有解的充要条件是 $n \equiv 0,3 \pmod 4$) 且 $n \neq 3,4;2008$ 年阴洪生^[2] 又证明 $R_3(n)$ 有解的充要条件是n = 0.4, $8 \pmod 9$) 且 $n \neq 4,8,9$;文献[3] 证明 $R_4(n)$ 有解的充要条件是 $n = 0,7 \pmod 8$) 且 $n \neq 7,8$. 本文系统地研究了平方数集合的五分拆问题,并证明 $R_5(n)$ 有解的必要条件是 $n \equiv 0,2,4 \pmod 5$) 且 $n \neq 2,4,5,7,9$, 10,12,14,15,17,22.

作者简介:罗益奎(1964-),男,副教授,主要从事基础数学研究。 *广西机电职业技术学院科研经费资助。

1 相关引理

问题 $R_5(n)$:将集合 $M=\{1^2,2^2,\cdots,n^2\}$ 分拆成5个子集A,B,C,D,E满足

 $(1)M = A \cup B \cup C \cup D \cup E$,且A,B,C,D,E两两互不相交;

(2)A,B,C,D,E 的各自元素之和相等[A] = [B] = [C] = [D] = [E].

引理 $\mathbf{1}^{[1]}$ 对于任意 8 个相连的正整数 $k+1,k+2,\cdots,k+8,$ 令

$$A = \{(k+1)^2, (k+4)^2, (k+6)^2, (k+7)^2\},\$$

$$B = \{(k+2)^2, (k+3)^2, (k+5)^2, (k+8)^2\},\$$

则必有[A] = [B].

引理 $2^{[2]}$ 对于任意 18 个相连正整数 $k+1,k+2,\cdots,k+18$,以下 3 个集合

$$A = \{(k+1)^2, (k+6)^2, (k+9)^2, (k+10)^2, (k+14)^2, (k+17)^2\},\$$

$$B = \{(k+2)^2, (k+5)^2, (k+7)^2, (k+12)^2, (k+15)^2, (k+16)^2\},$$

$$C = \{(k+3)^2, (k+4)^2, (k+8)^2, (k+11)^2, (k+13)^2, (k+18)^2\}$$

的元素之和相等,即[A] = [B] = [C].

引理 $3^{[3]}$ 对于任意 32 个相连的正整数 k+1, k+2,…,k+32,令

收稿日期:2011-06-07

修回日期:2011-10-08

 $A = \{(k+1)^2, (k+7)^2, (k+12)^2, (k+14)^2, (k+20)^2, (k+22)^2, (k+25)^2, (k+31)^2\},\$

 $B = \{(k+3)^2, (k+5)^2, (k+10)^2, (k+16)^2, (k+18)^2, (k+24)^2, (k+27)^2, (k+29)^2\},\$

 $C = \{(k+4)^2, (k+6)^2, (k+9)^2, (k+15)^2, (k+17)^2, (k+23)^2, (k+28)^2, (k+30)^2\},$

 $D = \{(k+2)^2, (k+8)^2, (k+11)^2, (k+13)^2, (k+19)^2, (k+21)^2, (k+26)^2, (k+32)^2\},$

或者

 $A = \{(k+1)^2, (k+7)^2, (k+10)^2, (k+16)^2, (k+20)^2, (k+22)^2, (k+27)^2, (k+29)^2\},\$

 $B = \{(k+3)^2, (k+5)^2, (k+12)^2, (k+14)^2, (k+14)^2, (k+12)^2, ($

 $(k+18)^2$, $(k+24)^2$, $(k+25)^2$, $(k+31)^2$ }, $C = \{(k+4)^2, (k+6)^2, (k+11)^2, (k+13)^2,$

 $(k+17)^2$, $(k+23)^2$, $(k+26)^2$, $(k+32)^2$ },

 $D = \{(k+2)^2, (k+8)^2, (k+9)^2, (k+15)^2, (k+19)^2, (k+21)^2, (k+28)^2, (k+30)^2\}.$

则 A,B,C,D 的各自元素之和相等,即[A] = [B] = [C] = [D].

引理 4 对于任意 50 个相连的正整数 $k+1,k+2,\dots,k+50$,令

 $A = \{(k+1)^2, (k+10)^2, (k+13)^2, (k+18)^2, (k+25)^2, (k+26)^2, (k+32)^2, (k+39)^2, (k+44)^2, (k+47)^2\},\$

 $B = \{(k+2)^2, (k+9)^2, (k+14)^2, (k+17)^2, (k+23)^2, (k+28)^2, (k+35)^2, (k+36)^2, (k+41)^2, (k+50)^2\},\$

 $C = \{(k+3)^2, (k+8)^2, (k+12)^2, (k+19)^2, (k+24)^2, (k+27)^2, (k+31)^2, (k+40)^2, (k+45)^2, (k+46)^2\},$

 $D = \{(k+5)^2, (k+6)^2, (k+11)^2, (k+20)^2, (k+22)^2, (k+29)^2, (k+34)^2, (k+37)^2, (k+43)^2, (k+48)^2\},\$

 $E = \{(k+4)^2, (k+7)^2, (k+15)^2, (k+16)^2, (k+21)^2, (k+30)^2, (k+33)^2, (k+38)^2, (k+42)^2, (k+49)^2\}.$

则 A,B,C,D,E 的各自元素之和相等.

证明 根据引理 1,引理 2 和引理 3 的方法,直接验算即可知引理 4 成立.

2 主要结果

定理 1 若 $n \equiv 0 \pmod{50}$,则问题 $R_5(n)$ 必有解.

证明 将 1^2 , 2^2 , \dots , n^2 (n = 50k) 依大小次序分成 50 个数一组, 每组按照引理 4 的方法分到 A_i , B_i ,

 $C_i, D_i, E_i (1 \leq i \leq k)$ 中去,即 $M_i = A_i \cup B_i \cup C_i \cup D_i \cup E_i$,其中 A_i, B_i, C_i, D_i ,是, 互不相交,且 $[A_i] = [B_i] = [C_i] = [D_i] = [E_i]$,令

 $A = A_1 \cup A_2 \cup \cdots \cup A_k; B = B_1 \cup B_2 \cup \cdots \cup B_k; C = C_1 \cup C_2 \cup \cdots \cup C_k; D = D_1 \cup D_2 \cup \cdots \cup D_k; E = E_1 \cup E_2 \cup \cdots \cup E_k.$

则由 $[A_i] = [B_i] = [C_i] = [D_i] = [E_i]$ 有[A] = [B] = [C] = [D] = [E].

定理 2 若 $R_5(n)$ 有解,则问题 $R_5(n+50)$ 必有解.

证明 由 $R_5(n)$ 有解,即 $M = \{1^2, 2^2, \dots, n^2\} = A \cup B \cup C \cup D \cup E$,其中 A, B, C, D, E 两两互不相 交,且各自元素之和相等 [A] = [B] = [C] = [D] = [E]. 将新加入的 50 个数按照引理的方法分到 A, B, C, D, E 中去,即得到 $R_5(n+50)$ 的解.

定理 3 问题 $R_5(n)$ 有解的充要条件是 $n \equiv 0$, 2,4(mod 5) 且 $n \neq 2$,4,5,7,9,10,12,14,15,17,22; $[A] = [B] = [C] = [D] = [E] = \frac{n(n+1)(2n+1)}{30}.$

证明 必要性. 若 $R_5(n)$ 有解,则有 $n(n+1)(2n+1) \equiv 0 \pmod{5}$,故由

 $n(n+1)(2n+1) \equiv 0 \pmod{5} \Rightarrow n \equiv 0, 2, 4 \pmod{5}$, \mathbb{Z} $(n+1)(2n+1) \equiv 0 \pmod{5} \Rightarrow n \equiv 0, 2, 4 \pmod{5}$

若
$$n=12$$
,则 $\frac{n(n+1)(2n+1)}{30}=130<12^2$,

 $R_5(12)$ 无解;若n=14,则 $\frac{n(n+1)(2n+1)}{30}=203$.设

 $14^2 \in A$,而 $[A] - 14^2 = 7$ 不能表示为平方和的形式,

故 $R_5(14)$ 无解;若n=15,则 $\frac{n(n+1)(2n+1)}{30}=248$.

设 $15^2 \in A$,而 $[A] - 15^2 = 23$ 不能表示为平方和的形式,故, R_5 (15) 无解.

若 n=17,则 $\frac{n(n+1)(2n+1)}{30}=357$,于是有 17^2

 $∈ A, 16^2 ∈ B, 15^2 ∈ C, 14^2 ∈ D, 13^2 ∈ E, \overline{m}$

 $[A] = 357 = 17^2 + 68 = 17^2 + 8^2 + 2^2; [B] = 357$ = $16^2 + 101 = 16^2 + 10^2 + 1^2; [C] = 357 = 15^2 + 132;$ $[D] = 357 = 14^2 + 161; [E] = 357 = 13^2 + 188.$

若 $11^2 \in C$,则 $357 - 15^2 - 11^2 = 11$ 不能表示为平方和的形式;若 $11^2 \in E$,则 $357 - 13^2 - 11^2 = 67$ 不能表示为平方和的形式,故 $11^2 \in D$,则[D] = $357 = 14^2 + 11^2 + 6^2 + 2^2$,从而 $12^2 \in E$,而 $357 - 13^2 - 12^2 = 44$ 不能表示为平方和的形式,故 R_5 (17) 无解.

当
$$n=19$$
 时, $\frac{n(n+1)(2n+1)}{30}=494$,问题

Guangxi Sciences, Vol. 19 No. 1, February 2012

$R_5(19)$ 有解:

 $A = \{1^2, 2^2, 5^2, 8^2, 12^2, 16^2\}, B = \{4^2, 6^2, 9^2, 19^2\}, C = \{3^2, 14^2, 17^2\}, D = \{7^2, 11^2, 18^2\}, E = \{10^2, 13^2, 15^2\}.$

当
$$n=20$$
 时, $\frac{n(n+1)(2n+1)}{30}=574$,问题

$R_{5}(20)$ 有解:

 $A = \{1^2, 4^2, 6^2, 11^2, 20^2\}, B = \{2^2, 5^2, 16^2, 17^2\},\$ $C = \{3^2, 12^2, 14^2, 15^2\}, D = \{7^2, 8^2, 10^2, 19^2\}, E = \{9^2, 13^2, 18^2\}.$

当
$$n=22$$
 时, $\frac{n(n+1)(2n+1)}{30}=759$,问题

$R_{5}(22)$ 无解(证明略).

当
$$n = 24$$
 时, $\frac{n(n+1)(2n+1)}{30} = 980$,问题

$R_5(24)$ 有解:

 $A = \{1^2, 2^2, 4^2, 6^2, 7^2, 10^2, 11^2, 13^2, 22^2\}, B = \{3^2, 9^2, 19^2, 23^2\}, C = \{5^2, 15^2, 17^2, 21^2\}, D = \{8^2, 12^2, 14^2, 24^2\}, E = \{16^2, 18^2, 20^2\}.$

当
$$n=25$$
 时, $\frac{n(n+1)(2n+1)}{30}=1105$,问题

$R_5(25)$ 有解:

 $A = \{1^2, 3^2, 5^2, 6^2, 7^2, 9^2, 10^2, 11^2, 13^2, 15^2, 17^2\}, B = \{2^2, 16^2, 19^2, 22^2\}, C = \{4^2, 8^2, 20^2, 25^2\}, D$ $= \{12^2, 14^2, 18^2, 21^2\}, E = \{23^2, 24^2\}.$

当
$$n=27$$
 时, $\frac{n(n+1)(2n+1)}{30}=1386$,问题

$R_5(27)$ 有解:

 $A = \{1^2, 2^2, 3^3, 4^2, 5^2, 6^2, 8^2, 10^2, 11^2, 12^2, 13^2, 16^2, 21^2\}, B = \{7^2, 18^2, 22^2, 23^2\}, C = \{14^2, 15^2, 17^2, 26^2\}, D = \{9^2, 24^2, 27^2\}, E = \{19^2, 20^2, 25^2\}.$

当
$$n=29$$
 时, $\frac{n(n+1)(2n+1)}{30}=1711$,问题

$R_{5}(29)$ 有解:

 $A = \{1^2, 2^2, 3^2, 4^2, 6^2, 8^2, 11^2, 12^2, 16^2, 22^2, 24^2\}, B = \{5^2, 10^2, 19^2, 21^2, 28^2\}, C = \{13^2, 17^2, 18^2, 20^2, 23^2\}, D = \{7^2, 14^2, 25^2, 29^2\}, E = \{9^2, 15^2, 26^2, 27^2\}.$

当
$$n=30$$
 时, $\frac{n(n+1)(2n+1)}{30}=1891$,问题

$R_{5}(30)$ 有解:

 $A = \{1^2, 5^2, 6^2, 8^2, 12^2, 13^2, 14^2, 16^2, 18^2, 26^2\}, B$ $= \{4^2, 10^2, 11^2, 15^2, 23^2, 30^2\}, C = \{17^2, 19^2, 20^2, 29^2\}, D = \{3^2, 9^2, 21^2, 24^2, 28^2\}, E = \{2^2, 7^2, 22^2, 25^2, 27^2\}.$

当
$$n=32$$
 时, $\frac{n(n+1)(2n+1)}{30}=2288$,问题

$R_5(32)$ 有解:

 $A = \{1^2, 5^2, 19^2, 21^2, 26^2, 28^2\}, B = \{2^2, 7^2, 17^2, 23^2, 24^2, 29^2\}, C = \{6^2, 12^2, 18^2, 20^2, 22^2, 30^2\}, D = \{8^2, 9^2, 10^2, 13^2, 15^2, 25^2, 32^2\}, E = \{3^2, 4^2, 11^2, 14^2, 16^2, 27^2, 31^2\}.$

当
$$n = 34$$
 时, $\frac{n(n+1)(2n+1)}{30} = 2737$,问题

$R_5(34)$ 有解:

 $A = \{1^2, 3^2, 11^2, 19^2, 33^2, 34^2\}, B = \{2^2, 14^2, 26^2, 30^2, 31^2\}, C = \{4^2, 7^2, 9^2, 15^2, 18^2, 24^2, 25^2, 29^2\}, D = \{6^2, 8^2, 10^2, 27^2, 28^2, 32^2\}, E = \{5^2, 12^2, 13^2, 16^2, 17^2, 20^2, 21^2, 22^2, 23^2\}.$

当
$$n=35$$
 时, $\frac{n(n+1)(2n+1)}{30}=2982$,问题

$R_5(35)$ 有解:

 $A = \{4^2, 29^2, 30^2, 35^2\}, B = \{2^2, 3^2, 5^2, 9^2, 10^2, 12^2, 15^2, 24^2, 27^2, 33^2\}, C = \{1^2, 13^2, 14^2, 26^2, 28^2, 34^2\}, D = \{8^2, 16^2, 22^2, 23^2, 25^2, 32^2\}, E = \{6^2, 7^2, 11^2, 17^2, 18^2, 19^2, 20^2, 21^2, 31^2\}.$

当
$$n=37$$
 时, $\frac{n(n+1)(2n+1)}{30}=3515$,问题

$R_{5}(37)$ 有解:

 $A = \{3^2, 29^2, 36^2, 37^2\}, B = \{1^2, 10^2, 26^2, 27^2, 28^2, 35^2\}, C = \{8^2, 13^2, 21^2, 22^2, 24^2, 25^2, 34^2\}, D = \{2^2, 6^2, 14^2, 19^2, 20^2, 23^2, 30^2, 33^2\}, E = \{4^2, 5^2, 7^2, 9^2, 11^2, 12^2, 15^2, 16^2, 17^2, 18^2, 31^2, 32^2\}.$

当
$$n=39$$
 时, $\frac{n(n+1)(2n+1)}{30}=4108$,问题

$R_5(39)$ 有解:

 $A = \{11^2, 19^2, 20^2, 35^2, 39^2\}, B = \{1^2, 5^2, 7^2, 16^2, 22^2, 30^2, 32^2, 37^2\}, C = \{3^2, 10^2, 15^2, 19^2, 31^2, 34^2, 36^2\}, D = \{6^2, 8^2, 9^2, 21^2, 23^2, 27^2, 28^2, 38^2\}, E = \{2^2, 4^2, 12^2, 13^2, 14^2, 17^2, 18^2, 24^2, 25^2, 26^2, 33^2\}.$

当
$$n=40$$
 时, $\frac{n(n+1)(2n+1)}{30}=4428$,问题

$R_{5}(40)$ 有解:

 $A = \{40^2, 35^2, 32^2, 23^2, 7^2, 1^2\}, B = \{39^2, 34^2, 33^2, 22^2, 12^2, 5^2, 3^2\}, C = \{38^2, 29^2, 28^2, 27^2, 21^2, 13^2, 4^2, 2^2\}, D = \{37^2, 36^2, 25^2, 20^2, 19^2, 14^2, 10^2, 9^2\}, E = \{31^2, 30^2, 26^2, 24^2, 18^2, 17^2, 16^2, 15^2, 11^2, 8^2, 6^2\}.$

当
$$n=42$$
 时, $\frac{n(n+1)(2n+1)}{30}=5117$,问题

$R_5(42)$ 有解:

 $A = \{42^2, 36^2, 34^2, 30^2, 1^2\}, B = \{41^2, 35^2, 32^2, 29^2, 15^2, 11^2\}, C = \{40^2, 33^2, 28^2, 27^2, 25^2, 16^2, 5^2, 16^2, 1$

 3^{2} }, $D = \{39^{2}, 26^{2}, 24^{2}, 21^{2}, 19^{2}, 18^{2}, 17^{2}, 20^{2}, 23^{2}\}$, $E = \{38^{2}, 37^{2}, 31^{2}, 22^{2}, 14^{2}, 13^{2}, 12^{2}, 10^{2}, 9^{2}, 8^{2}, 7^{2}, 6^{2}, 4^{2}, 2^{2}\}$.

当
$$n = 44$$
 时, $\frac{n(n+1)(2n+1)}{30} = 5874$,问题

$R_5(44)$ 有解:

 $A = \{44^2, 39^2, 37^2, 30^2, 12^2, 2^2\}, B = \{43^2, 38^2, 35^2, 33^2, 13^2, 9^2, 4^2, 1^2\}, C = \{42^2, 36^2, 32^2, 31^2, 28^2, 6^2, 3^2\}, D = \{41^2, 40^2, 25^2, 23^2, 21^2, 20^2, 18^2, 15^2, 7^2\}, E = \{34^2, 29^2, 27^2, 26^2, 24^2, 22^2, 19^2, 17^2, 16^2, 14^2, 11^2, 10^2, 8^2, 5^2\}.$

当
$$n=45$$
 时, $\frac{n(n+1)(2n+1)}{30}=6279$,问题

$R_{5}(45)$ 有解:

 $A = \{45^{2}, 44^{2}, 42^{2}, 23^{2}, 5^{2}\}, B = \{43^{2}, 41^{2}, 40^{2}, 32^{2}, 11^{2}, 2^{2}\}, C = \{39^{2}, 38^{2}, 37^{2}, 36^{2}, 24^{2}, 8^{2}, 3^{2}\}, D = \{35^{2}, 34^{2}, 33^{2}, 31^{2}, 30^{2}, 27^{2}, 13^{2}, 7^{2}, 1^{2}\}, E = \{29^{2}, 28^{2}, 26^{2}, 25^{2}, 22^{2}, 21^{2}, 20^{2}, 19^{2}, 18^{2}, 17^{2}, 16^{2}, 15^{2}, 14^{2}, 12^{2}, 10^{2}, 9^{2}, 6^{2}, 4^{2}\}.$

当
$$n=47$$
 时, $\frac{n(n+1)(2n+1)}{30}=7144$,问题

$R_5(47)$ 有解:

 $A = \{47^2, 46^2, 45^2, 28^2, 3^2, 1^2\}, B = \{44^2, 43^2, 42^2, 39^2, 7^2, 5^2\}, C = \{41^2, 38^2, 37^2, 36^2, 33^2, 15^2, 6^2, 2^2\}, D = \{40^2, 35^2, 34^2, 32^2, 31^2, 29^2, 16^2, 9^2\}, E = \{30^2, 27^2, 26^2, 25^2, 24^2, 23^2, 22^2, 21^2, 20^2, 19^2, 18^2, 17^2, 14^2, 13^2, 12^2, 11^2, 10^2, 8^2, 4^2\}.$

当
$$n=49$$
 时, $\frac{n(n+1)(2n+1)}{30}=8085$,问题

$R_5(49)$ 有解:

 $A = \{49^2, 48^2, 47^2, 33^2, 9^2, 1^2\}, B = \{46^2, 45^2, 44^2, 38^2, 20^2, 10^2, 8^2\}, C = \{42^2, 41^2, 40^2, 39^2, 37^2, 11^2, 5^2, 2^2\}, D = \{36^2, 35^2, 34^2, 32^2, 31^2, 30^2, 29^2, 21^2, 15^2, 4^2\}, E = \{43^2, 28^2, 27^2, 26^2, 25^2, 24^2, 23^2, 22^2, 19^2, 18^2, 17^2, 16^2, 14^2, 13^2, 12^2, 7^2, 6^2, 3^2\}.$

当
$$n=52$$
 时, $\frac{n(n+1)(2n+1)}{30}=9646$,问题

$R_5(52)$ 有解:

 $A = \{52^2, 50^2, 48^2, 44^2, 11^2, 9^2\}, B = \{51^2, 47^2, 45^2, 43^2, 31^2, 1^2\}, C = \{49^2, 42^2, 39^2, 38^2, 37^2, 33^2, 7^2, 3^2\}, D = \{46^2, 41^2, 40^2, 36^2, 34^2, 32^2, 25^2, 12^2, 2^2\}, E = \{35^2, 30^2, 29^2, 28^2, 27^2, 26^2, 24^2, 23^2, 22^2, 21^2, 20^2, 19^2, 18^2, 17^2, 16^2, 15^2, 14^2, 13^2, 10^2, 8^2, 6^2, 5^2, 4^2\}.$

当
$$n=54$$
 时, $\frac{n(n+1)(2n+1)}{30}=10791$,问题

$R_5(54)$ 有解:

 $A = \{54^{2}, 50^{2}, 48^{2}, 45^{2}, 30^{2}, 9^{2}, 8^{2}, 1^{2}\}, B = \{53^{2}, 51^{2}, 46^{2}, 42^{2}, 34^{2}, 16^{2}, 7^{2}, 6^{2}, 2^{2}\}, C = \{52^{2}, 49^{2}, 47^{2}, 33^{2}, 32^{2}, 31^{2}, 15^{2}, 12^{2}, 5^{2}, 3^{2}\}, D = \{44^{2}, 43^{2}, 40^{2}, 38^{2}, 37^{2}, 35^{2}, 28^{2}, 22^{2}, 10^{2}\}, E = \{41^{2}, 39^{2}, 36^{2}, 29^{2}, 27^{2}, 26^{2}, 25^{2}, 24^{2}, 23^{2}, 21^{2}, 20^{2}, 19^{2}, 18^{2}, 17^{2}, 14^{2}, 13^{2}, 11^{2}, 4^{2}\}.$

当
$$n=55$$
 时, $\frac{n(n+1)(2n+1)}{30}=11396$,问题

$R_{5}(55)$ 有解:

 $A = \{55^{2}, 50^{2}, 48^{2}, 45^{2}, 38^{2}, 9^{2}, 4^{2}, 1^{2}\}, B = \{54^{2}, 49^{2}, 46^{2}, 44^{2}, 39^{2}, 19^{2}, 10^{2}, 6^{2}, 3^{2}\}, C = \{53^{2}, 51^{2}, 47^{2}, 41^{2}, 35^{2}, 23^{2}, 17^{2}, 7^{2}, 2^{2}\}, D = \{52^{2}, 42^{2}, 36^{2}, 33^{2}, 31^{2}, 30^{2}, 28^{2}, 25^{2}, 24^{2}, 21^{2}, 16^{2}\}, E = \{43^{2}, 40^{2}, 37^{2}, 34^{2}, 32^{2}, 29^{2}, 27^{2}, 26^{2}, 22^{2}, 20^{2}, 18^{2}, 15^{2}, 14^{2}, 13^{2}, 12^{2}, 11^{2}, 5^{2}, 8^{2}\}.$

当
$$n=57$$
 时, $\frac{n(n+1)(2n+1)}{30}=12673$,问题

$R_{5}(57)$ 有解:

 $A = \{5^2, 15^2, 37^2, 50^2, 51^2, 52^2, 57^2\}, B = \{1^2, 3^2, 12^2, 34^2, 41^2, 44^2, 47^2, 49^2, 56^2\}, C = \{2^2, 9^2, 21^2, 33^2, 42^2, 43^2, 46^2, 48^2, 55^2\}, D = \{4^2, 6^2, 14^2, 17^2, 23^2, 32^2, 35^2, 36^2, 39^2, 40^2, 45^2, 54^2\}, E = \{7^2, 8^2, 10^2, 11^2, 13^2, 16^2, 18^2, 19^2, 20^2, 22^2, 24^2, 25^2, 26^2, 27^2, 28^2, 29^2, 30^2, 31^2, 38^2, 53^2\}.$

当
$$n=59$$
 时, $\frac{n(n+1)(2n+1)}{30}=14042$,问题

$R_{5}(59)$ 有解:

 $A = \{5^{2}, 16^{2}, 19^{2}, 50^{2}, 52^{2}, 53^{2}, 54^{2}, 59^{2}\}, B = \{2^{2}, 6^{2}, 12^{2}, 14^{2}, 28^{2}, 47^{2}, 48^{2}, 49^{2}, 51^{2}, 58^{2}\}, C = \{3^{2}, 13^{2}, 24^{2}, 32^{2}, 33^{2}, 43^{2}, 44^{2}, 45^{2}, 46^{2}, 57^{2}\}, D = \{1^{2}, 8^{2}, 11^{2}, 21^{2}, 30^{2}, 37^{2}, 38^{2}, 39^{2}, 40^{2}, 41^{2}, 42^{2}, 56^{2}\}, E = \{4^{2}, 7^{2}, 9^{2}, 10^{2}, 15^{2}, 17^{2}, 18^{2}, 20^{2}, 22^{2}, 23^{2}, 25^{2}, 26^{2}, 27^{2}, 29^{2}, 31^{2}, 34^{2}, 35^{2}, 36^{2}, 55^{2}\}.$

当
$$n=60$$
 时, $\frac{n(n+1)(2n+1)}{30}=14762$,问题

$R_5(60)$ 有解:

 $A = \{10^2, 13^2, 46^2, 53^2, 54^2, 55^2, 60^2\}, B = \{2^2, 9^2, 15^2, 39^2, 44^2, 47^2, 51^2, 52^2, 59^2\}, C = \{1^2, 5^2, 6^2, 26^2, 29^2, 41^2, 42^2, 43^2, 45^2, 50^2, 58^2\}, D = \{7^2, 11^2, 20^2, 23^2, 36^2, 37^2, 38^2, 40^2, 48^2, 49^2, 57^2\}, E = \{3^2, 4^2, 8^2, 12^2, 14^2, 16^2, 17^2, 18^2, 19^2, 21^2, 22^2, 24^2, 25^2, 27^2, 28^2, 30^2, 31^2, 32^2, 33^2, 34^2, 35^2, 56^2\}.$

当
$$n=62$$
 时, $\frac{n(n+1)(2n+1)}{30}=16275$,问题

$R_{5}(62)$ 有解:

 $A = \{2^{2}, 6^{2}, 14^{2}, 20^{2}, 51^{2}, 53^{2}, 56^{2}, 57^{2}, 62^{2}\}, B = \{4^{2}, 8^{2}, 12^{2}, 25^{2}, 28^{2}, 45^{2}, 46^{2}, 48^{2}, 51^{2}, 61^{2}\}, C = \{18^{2}, 22^{2}, 29^{2}, 30^{2}, 32^{2}, 43^{2}, 44^{2}, 49^{2}, 54^{2}, 60^{2}\}, D = \{3^{2}, 16^{2}, 23^{2}, 39^{2}, 42^{2}, 47^{2}, 40^{2}, 41^{2}, 55^{2}, 59^{2}\}, E = \{1^{2}, 5^{2}, 7^{2}, 9^{2}, 10^{2}, 11^{2}, 13^{2}, 15^{2}, 17^{2}, 19^{2}, 21^{2}, 24^{2}, 25^{2}, 26^{2}, 31^{2}, 33^{2}, 34^{2}, 35^{2}, 36^{2}, 37^{2}, 38^{2}, 52^{2}, 58^{2}\}.$

当
$$n=64$$
 时, $\frac{n(n+1)(2n+1)}{30}=17888$,问题

$R_5(64)$ 有解:

 $A = \{64^2, 59^2, 56^2, 52^2, 49^2, 45^2, 6^2, 3^2\}, B = \{63^2, 58^2, 54^2, 51^2, 47^2, 44^2, 28^2, 8^2, 5^2, 4^2, 2^2\}, C = \{62^2, 55^2, 50^2, 46^2, 42^2, 39^2, 37^2, 32^2, 26^2, 7^2\}, D = \{61^2, 53^2, 43^2, 38^2, 36^2, 34^2, 31^2, 29^2, 35^2, 25^2, 23^2, 21^2, 19^2, 18^2, 15^2, 9^2\}, E = \{60^2, 57^2, 48^2, 41^2, 40^2, 35^2, 33^2, 30^2, 27^2, 24^2, 22^2, 20^2, 17^2, 16^2, 14^2, 13^2, 12^2, 11^2, 1^2\}.$

当
$$n=65$$
 时, $\frac{n(n+1)(2n+1)}{30}=18733$,问题

$R_5(65)$ 有解:

 $A = \{65^2, 57^2, 55^2, 51^2, 47^2, 35^2, 33^2, 30^2, 13^2, 5^2, 4^2\}, B = \{64^2, 58^2, 54^2, 46^2, 45^2, 36^2, 34^2, 32^2, 24^2, 10^2, 8^2\}, C = \{63^2, 59^2, 56^2, 48^2, 43^2, 42^2, 42^2, 39^2, 23^2, 12^2, 6^2\}, D = \{62^2, 60^2, 53^2, 50^2, 49^2, 44^2, 37^2, 15^2, 7^2\}, E = \{61^2, 52^2, 41^2, 40^2, 38^2, 31^2, 29^2, 28^2, 27^2, 26^2, 25^2, 22^2, 21^2, 20^2, 19^2, 18^2, 17^2, 16^2, 14^2, 11^2, 9^2, 3^2, 2^2, 1^2\}.$

当
$$n=67$$
 时, $\frac{n(n+1)(2n+1)}{30}=20502$,问题

R₅(67) 有解:

 $A = \{67^2, 62^2, 59^2, 56^2, 54^2, 51^2, 5^2, 3^2, 1^2\}, B = \{66^2, 61^2, 58^2, 57^2, 52^2, 48^2, 28^2, 4^2, 2^2\}, C = \{65^2, 60^2, 55^2, 47^2, 44^2, 41^2, 37^2, 36^2, 31^2, 10^2, 8^2, 6^2\}, D = \{64^2, 53^2, 50^2, 45^2, 42^2, 40^2, 35^2, 33^2, 32^2, 30^2, 26^2, 24^2, 13^2, 7^2\}, E = \{63^2, 49^2, 46^2, 43^2, 39^2, 38^2, 34^2, 29^2, 27^2, 25^2, 23^2, 22^2, 21^2, 20^2, 19^2, 18^2, 17^2, 16^2, 15^2, 14^2, 12^2, 11^2, 9^2\}.$

当
$$n=69$$
 时, $\frac{n(n+1)(2n+1)}{30}=22379$,则由引

理 $4R_5$ (69) 有解:

 $A = \{1^2, 2^2, 5^2, 8^2, 12^2, 16^2, 20^2, 29^2, 32^2, 37^2, 44^2, 45^2, 51^2, 58^2, 63^2, 66^2\}, B = \{4^2, 6^2, 9^2, 19^2, 21^2, 28^2, 33^2, 36^2, 42^2, 47^2, 54^2, 55^2, 60^2, 69^2\}, C = \{3^2, 14^2, 17^2, 22^2, 27^2, 31^2, 38^2, 43^2, 46^2, 50^2, 59^2, 64^2, 65^2\}, D = \{7^2, 11^2, 18^2, 24^2, 25^2, 30^2, 39^2, 41^2, 48$

 51^2 , 56^2 , 62^2 , 67^2 }, $E = \{10^2, 13^2, 15^2, 23^2, 26^2, 34^2, 35^2, 40^2, 49^2, 52^2, 57^2, 61^2, 68^2\}$.

当
$$n=72$$
 时, $\frac{n(n+1)(2n+1)}{30}=25404$,问题

$R_{5}(72)$ 有解:

 $A = \{72^2, 70^2, 62^2, 59^2, 43^2, 42^2, 32^2, 22^2, 13^2, 12^2\}, B = \{71^2, 68^2, 66^2, 56^2, 48^2, 46^2, 45^2, 40^2, 12^2, 7^2, 3^2\}, C = \{69^2, 65^2, 60^2, 54^2, 53^2, 39^2, 37^2, 36^2, 28^2, 26^2, 25^2, 23^2, 17^2, 2^2\}, D = \{67^2, 63^2, 58^2, 57^2, 55^2, 47^2, 44^2, 38^2, 30^2, 24^2, 11^2, 9^2, 5^2, 4^2\}, E = \{64^2, 61^2, 51^2, 50^2, 49^2, 41^2, 35^2, 34^2, 33^2, 31^2, 29^2, 27^2, 21^2, 20^2, 19^2, 18^2, 16^2, 15^2, 14^2, 10^2, 8^2, 6^2\}.$

逐次利用定理 3 及数学归纳法^[4] 知,问题 $R_5(n)$ 有解的必要条件是 $n \equiv 0, 2, 4 \pmod{5}$ 且 $n \neq 2, 4, 5, 7, 9, 10, 12, 14, 15, 17, 22; [A] = [B] = [C] = [D] = [E] = \frac{n(n+1)(2n+1)}{30}.$

再结合引理 4 可得到 n 满足问题 $R_{5}(n)$ 的充要条件的所有解.

充分性. 若n满足条件 $n \equiv 0,2,4 \pmod{5}$ 且 $n \neq 2,4,5,7,9,10,12,14,15,17,22$;

$$[A] = [B] = [C] = [D] = [E] = \frac{n(n+1)(2n+1)}{30}.$$

则 $n(n+1)(2n+1) \equiv 0 \pmod{5}$,且 n(n+1)(2n+1) $\equiv 0 \pmod{6}$,故 $\frac{n(n+1)(2n+1)}{30} =$ 整数. 由引理 4 知道,能将集合 $M = \{1^2, 2^2, \dots, n^2\}$ 分拆成 5 个子集 A, B,C, D, E 满足:

 $(1)M=A\cup B\cup C\cup D\cup E.A,B,C,D,E$ 两两 互不相交;

(2)A,B,C,D,E 的各自元素之和相等[A] = [B] = [C] = [D] = [E].

故问题 $R_5(n)$ 有解.

参考文献:

- [1] **阴洪生.一个集合分拆问题**[J]. 中等数学,2006(2):11-
- [2] **阴洪生. 平方数集合的三分拆问题**[J]. 中等数学,2008 (5):16-17.
- [3] **罗益奎. 关于平方数集合的四分拆问题**[J]. 广西民族学院学报,2011(1):77-79.
- [4] 华罗庚. 华罗庚科普著作文选[M]. 上海: 上海教育出版 社,1984:114-125.

(责任编辑:尹 闯)