误差向量与 Krylov 子空间对 GMRES(m)算法收敛速度 的影响 *

Influence of Residual Vector and Krylov Subspace on Convergence Velocity of GMRES Algorithm

吴果林¹,王 晟² WU Guo-lin¹, WANG Sheng²

(1.桂林航天工业高等专科学校计算机系,广西桂林 541004;2.桂林电子科技大学数学与计算 科学学院,广西桂林 541004)

(1. Department of Computer, Guilin College of Aerospace Techology, Guilin, Guangxi, 541004, China; 2. School of Mathematics & Computing Science, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China)

摘要: 从广义极小残量法 GM RES(m)的结构出发, 分析其误差向量与 Krylov 子空间对该算 法收敛速度的影响, 推导出误差向量与 Krylov 子空间第 1 个向量和第 m+1 个向量的方向余弦关系, 并用数值 算例验证 其合理性. 当误差向量 r_{k+1} 在 Krylov 子空间向量 v_1 的投影较大而在向量 v_{m+1} 的投影较小时, GM RES(m)算法收敛速度较 慢, 反之亦反. 算例结果与理论结果相符.

关键词:线性方程 迭代方法 广义极小残量法 Krylov 子空间

中图法分类号: 0241.6 文献标识码: A 文章编号: 1005-9164(2011) 03-0214-04

Abstract: By analysing the structure of restarted GMRES algorithm, we discover that residual vector and K rylov subspace have an influence on the convergence velocity of GMRES(m) algorithm, and deduce that the residual vector has a direction cosine relationship with the first vector and m + 1 vector in Krylov subspace. A numerical example is used to verify its rationality. Algorithm analysis indicates that the convergence velocity of GMRES(m) method is slower when the project of the residual vector r_{k+1} is large in the krylov subspace v_1 vector and small in the krylov subspace v_{m+1} vector, or vice versa.

Key words: linear equation, iterative method, GMRES(m), Krylov subspace

事实已证明许多科学计算可以归结为解线性方 程组 AX = b,其中 $A \in R^{n \times n}$ 为大型稀疏矩阵且非奇 异, $X, b \in R^n$.采用迭代法是求解这类方程组最普遍 的选择,其中广义极小残量法 (GM RES)^[1]由于计算 的近似解在相应的 Krylov 子空间满足残量范数极小 的性质备受大家关注,是目前最流行的方法之一. GM RES 方法在 Krylov 子空间上进行迭代,但是其 存储量和正交化工作量会随着迭代次数的增加而变

收稿日期: 2011-01-30

修回日期: 2011-03-07

- 作者简介:吴果林(1977-),男,硕士,讲师,主要从事数值计算、非参数统 计的研究。
- *2008年桂林航天工业高等专科学校科研项目资助。

得不可接受,因此 GM RES 方法对于大规模线性系统问题一般需要重新启动,即限制最大近似 Krylov 子空间的维数,或者说限制每次循环的最大迭代步数.在最大迭代步数之内,当每次循环算法达到一定 的迭代步数后,把当前所计算的近似解当作下一个循 环的初始值并在由新的误差向量所生成的 Krylov 子 空间上重新开始.通常,重新启动的 GM RES 算法每 次循环的迭代步数是固定的,记作 GM RES (m).

当系数矩阵 A 不是对称阵时, GM RES(m)算法 收敛速度较慢甚至出现停滞现象. 在近 20 年里, 许多 学者对 GM RES(m)方法的收敛性做了大量的工作. 然而, 大部分工作都集中在分析系数矩阵 A 的谱^[2:3] 以及 GM RES 多项式的根^[4:5] 对 GM RES(m)算法收 敛速度的影响,很少分析误差向量与 Krylov 子空间的关系对算法收敛速度的作用.

本文从GMRES(m)算法结构出发,推导出误差 向量与 Krylov 子空间第 1 个向量和第 m+1 个向量 的方向余弦关系.数值实验进一步表明,误差向量在 Krylov 子 空 间中的两个向量的投影直接影响 GMRES(m)算法的收敛速度.

1 GMRES(m)算法及性质

GMRES 算法是在 K ry lov 子空间 $K_m(A, r_0) =$ span{ $r_0, Ar_0, Ar_0^2, ..., Ar_0^{m-1}$ } 上进行迭代的一种算 法, 其中 $r_0 = b - Ax_0, x_0$ 为初始近似解. 其主要思 想是通过寻找一个近似解 $x_m \in x_0 + K_m(A, r_0)$, 使 得向量最小化范数 $||b - A(x_0 + z)||_2$, 这里 $z \in K_m(A, r_0)$, 算法的设计如下^[1].

算法1 GMRES 算法.

步骤1 给定初始近似解 xo,得到初始向量 ro

$$= b - Ax_0, \Leftrightarrow \beta = ||r_0||_2, \exists v_1 = r_0/\beta;$$

步骤 3 计算
$$w_j = Av_j$$
;

步骤 4 For
$$i = 1, 2, ..., j$$
;

步骤 5
$$h_{ij} = (w_j, v_i);$$

步骤6
$$w_j = w_j - h_{ij}v_i$$
;

步骤7 结束 i 循环;

步骤 8 $h_{j+1,j} = ||_{w_j} ||_2,$ 如果 $h_{j+1,j} = 0,$ 令 m = j, 跳到步骤 11;

- 步骤 9 $v_{j+1} = w_j / h_{j+1,j}$;
- 步骤 10 结束 j 循环;

步骤 11 定义一个 $(m+1) \times m$ 的 Hessenberg 矩阵 $H_m = (h_{ij})_{(m+1) \times m}$ 和 $V_m = (v_1, v_2, ..., v_m)$;

步骤 12 计算 y , 使得 $||\beta_{e_1} - H_{my}||_2$ 最小, 则 $x_m = x_0 + V_{my}$.

易见,如果算法 1 在第 *m* 步之前没有停止,则向 量 *v*₁, *v*₂, …, *v*_m 形成 Krylov 子空间 *K*_m(*A*, *r*₀)的一 组正交基^[6].因此,很容易推导出下列性质.

 $AV_m = V_m H_m + w_m e_m^T \tag{1.1}$

$$= V_{m+1}H_m, \qquad (1.2)$$

$$V_m^T A V_m = H_m. (1.3)$$

证明 由算法1第6,8,9步,我们有

$$Av_{j} = \sum_{i=1}^{j+1} h_{ij}v_{i}, j = 1, 2, ..., m.$$
 (1.4)

由矩阵 V_m , H_m 的定义, (1.4)式写成矩阵形式便有 (1.1)式, (1.2)式成立.对(1.1)式两边同时乘以矩阵 V_m^T ,注意到 v_1 , v_2 , ..., v_m 是 Krylov 子空间 K_m (A, r_0) 的一组正交基, 则(1.3)式成立.

显然,算法1随着 *m* 的增加,其存储量和计算量 大大增加,故对于大 *n* 来说,*m* 取大的值是不切实际 的,因此一种限制 Krylov 子空间最大维数的算 法——GM RES (m)算法被提出来,其过程如下.

算法2 GMRES(m)算法.

步骤 1 计算 $r_k = b - Ax_k$, $\beta = ||r_k||_2$ 和 $v_1 = r_k/\beta$;

步骤 2 利用算法 1 计算 y, 并记 $x_{k+1} = x_k + V_m y$;

步骤 3 如果 x_{k+1} 满足给定误差条件,则停止, 否则令 $x_k = x_{k+1}$,返回步骤 1.

性质 **1.2** 设 $r_{k+1} = b - Ax_{k+1}$ 表示算法 2 第 k次迭代的误差向量,则 r_{k+1} 可由 Krylov 子空间 $K_{m+1}(A, r_k) = \operatorname{span}\{r_k, Ar_k, Ar_k^2, \dots, Ar_k^{m-1}, Ar_k^m\}$ 线 性表出,其中 $K_{m+1}(A, r_k)$ 为算法 2 第 2 行所生成的 Krylov 子空间.

证明 由于算法 2 第 2 行套用算法 1, 由算法 1 可知 $K_{m+1}(A, r_k) = \text{span}\{v_1, v_2, \dots, v_{m+1}\}$.于是

 $r_{k+1} = b - Ax_{k+1} = b - A(x_k + V_m y) = b - Ax_k$ $- AV_m y = r_k - V_{m+1} H_m y.$

上面的等式应用了性质 1.1 中的 (1.2)式. 令 $z = H_m y$,则 $r_{k+1} = \beta v_1 - V_{m+1} z$.即 r_{k+1} 可由 v_1 , v_2 , ..., v_{m+1} 线性表出,从而 r_{k+1} 可由 $K_{m+1}(A, r_k)$ 线性表出.

2 GMRES(m)算法收敛速度分析

考虑到存储和计算量的原因,算法 2 限制了 m的大小($m \ll n$),利用重新启动的方法来收敛到方程 组的精确解.由GMRES(m)算法可知,重新启动后 算法所迭代的 Krylov 子空间发生了改变, 因此每次 重新启动后算法丢失了前面所生成的 Krylov 子空间 的信息,这就使它失去了全局最优性质,较之 GMRES 算法, 收敛速度一般会下降.Y.Saad 在文献 [1] 中指出, 如果 m 足够大, GMRES 算法可确保在 n 步之后收敛到方程组的精确解,这就启发我们,如果 GMRES(m)算法重新启动后生成的新 Krylov 子空 间近似于 GM RES 算法 Krylov 子空间中第 m+1 个 向量到第 2m 个向量所构成的子空间, GM RES (m)算法的收敛速度较之 GM RES 算法将不会发生太大 的改变.算法2重新启动后,用误差向量 rk+1 构造新 的 Krylov 子空间, 即新的迭代子空间为 $K_m(A, r_{k+1})$ $= \operatorname{span}\{r_{k+1}, Ar_{k+1}, Ar_{k+1}^{2}, \dots, Ar_{k+1}^{m-1}\} = \operatorname{span}\{v_{1}, v_{2}, v_{2}$

广西科学 2011年8月 第18卷第3期

..., v_m } . 对比算法 1 迭代 2m 步后的 Krylov 子空间 $K_{2m}(A, r_k) = \text{span}\{r_k, Ar_k, ..., Ar_k^{2m^{-1}}\} = \text{span}\{v_1, v_2, ..., v_m, v_{m+1}, ..., v_{2m}\}$, 不 难 发 现, 如 果 $r_{k+1} = c_1v_1(c_1$ 为数), 算法 2 重新启动后所生成的新 K rylov 子空间与之前的子空间相同, 迭代将在同一个子空间 上进行, 显然收敛速度会下降甚至出现停滞现象; 如 果 $r_{k+1} = c_{m+1}v_{m+1}(c_{m+1}$ 为数), 算法 2 重新启动后所 生成的新 K rylov 子空间与算法 1 第m+1步至第 2m步所生成的 K rylov 子空间相同, 重新启动后算法 2 两次循环所迭代的子空间与算法 1 迭代 2m 步的子 空间相同, 故算法 2 的收敛速度与算法 1 相比不会发 生太大变化.因此, 误差向量 $r_{k+1} \neq v_1, v_{m+1}$ 两个向量 投影将直接影响 GM RES(m)算法的收敛速度.

性质 **2.1** 设 *r_k*, *r_{k+1}* 分别是算法 2 循环前、循环 结束时的误差向量, 那么有下列关系成立:

$$\cos \langle r_k, r_{k+1} \rangle = rac{||r_k||_2}{||r_{k+1}||_2}$$

证明 记 *h^{^T* 表示矩阵 *H*^m 的第一行元素. 由算 法 1 第 12 步可得}

 $y = \beta \left(H_m^T H_m \right)^{-1} H_m^T e_1.$

$$\cos \langle r_{k}, r_{k+1} \rangle = \cos \langle v_{1}, r_{k+1} \rangle =$$

$$\frac{v_{1}^{T} r_{k+1}}{\|v_{1}\|_{2} \|r_{k+1}\|_{2}} = \frac{v_{1}^{T} r_{k+1}}{\|r_{k+1}\|_{2}},$$

$$v_{1}^{T} r_{k+1} = v_{1}^{T} (b - A(x_{k} + V_{m}y)) = v_{1}^{T} (\beta v_{1} - V_{m+1} H_{m}y) = \beta - e_{1}^{T} H_{m}y = \beta - h^{T}y,$$

$$\|r_{k+1}\|_{2}^{2} = (\beta v_{1} - V_{m})$$

 $V_{m+1}H_{my})^{T}(\beta_{v_{1}} - V_{m+1}H_{my}) = \beta^{2} - \beta_{h}^{T}y - \beta_{y}^{T}H_{m}^{T}V_{m+1}^{T}v_{1} + y^{T}H_{m}^{T}V_{m+1}^{T}V_{m+1}H_{my} = \beta^{2} - 2\beta_{h}^{T}y + y^{T}H_{m}^{T}H_{my} = \beta^{2} - 2\beta_{h}^{T}y + \beta_{y}^{T}H_{m}^{T}H_{m} - (H_{m}^{T}H_{m})^{-1}H_{m}^{T}e^{1} = \beta(\beta - h^{T}y).$ 于是

$$\cos \langle r_k, r_{k+1} \rangle = \frac{\beta - h^T y}{\sqrt{\beta \left(\beta - h^T y\right)}} = \frac{||r_{k+1}||_2}{||r_k||_2}.$$

性质 2.1 表明, 如果误差向量 *r*_{k+1} 的范数没有减 少,则误差向量 *r*_{k+1} 在向量 *v*₁ 的投影很大, 算法 2 重 新启动后将产生较少新的信息, 收敛速度会发生下 降. 从应用的角度来看, 这意味着可以监测误差向量 *r*_{k+1} 的范数下降程度来决定重新启动向量的选择. 如 果误差向量 *r*_{k+1} 的范数在重新启动前没有充分变小, 则可以另外选择一个误差向量作为重新启动向量. 这 种误差向 量可选择性探索可以 参见文献[7] 中 的例 2.

性质 2.2 设 r_{k+1} 是算法 2 循环结束时的误差向 量, v_{m+1} 为 K ry lov 子空间的第 m+1 个向量,则有下

列关系成立:

$$\cos \langle r_{k+1}, v_{m+1} \rangle = - \frac{h_{m+1,m} y_m}{\|r_{k+1}\|_2},$$

其中 y_m 为向量y的第m个分量, $h_{m+1,m}$ 为矩阵 H_m 中的元素.

证明
$$\cos \langle r_{k+1}, v_{m+1} \rangle = \frac{v_{m+1}^T r_{k+1}}{\|v_{m+1}\|_2 \|r_{k+1}\|_2} =$$

 $\frac{\mathcal{V}_{m+1}^T \mathcal{V}_{k+1}}{11}$

$$v_{m+1}^{T} r_{k+1} = v_{m+1}^{T} (b - A(x_{k} + V_{m}y)) = v_{m+1}^{T} (\beta v_{1} - V_{m+1} H_{m}y) = -e_{m+1}^{T} H_{m}y = -h_{m+1,m}e_{m}^{T}y = -h_{m+1,m}y_{m},$$

故

$$\cos \langle r_{k+1}, v_{m+1} \rangle = - \frac{h_{m+1, m} y_m}{\| r_m \|_2}.$$

通常情况下 *h*_{*m*+1,*m*} 比较小, *h*_{*m*+1,*m*y *m*} 与 ||*r*_{*k*+1} ||₂ 的比值也相对较小, 从而 ||*r*_{*k*+1} ||₂ 在 *v*_{*m*+1 上的投影 也比较小, 重新启动后新生成的 Krylov 子空间含有 较少的 *v*_{*m*+1} 信息, 收敛速度将会出现下降.}

综合性质 2.1 和 2.2 可以看出, 当误差向量 *r*_{k+1} 在 Krylov 子空间向量 *v*₁ 的投影较大而在向量 *v*_{m+1} 的投影较小时, GM RES (m)算法收敛速度较慢; 反 之, 当误差向量 *r*_{k+1} 在 Krylov 子空间向量 *v*₁ 的投影 较小而在向量 *v*_{m+1} 的投影较大时, GM RES(m)算法 收敛速度较快.

3 数值算例

为方便计算,以下的两个例子初始估计值均设为 $x_0 = (0, 0, ..., 0)^T$,右端向量 $b = (1, 1, ..., 1)^T$, Kryloy 子空间迭代的最大维数等于 25.

例 $1^{[8]}$ 令 $A = SDS^{-1}$, A, S, $D \in R^{1000\times1000}$, S = (1, 0, 9) 是双对角矩阵, 1 是主对角元, 0.9 是上对角元, D = diag (-10, -9, ..., -1, 1, 2, ..., 990). 从图 1 可以看出, 由于 A 有负特征值, 用 GM RES (m)算法 收敛速度很慢, 甚至出现了停滞现象.

图 1 重新启动次数和残量范数的对数 $\log_{10}(||r_m||_2)$ 的关系

Fig. 1 Relationship of restart numbers and residual norms $\log_{10}(||r_m||_2)$

为了体现误差向量 r_{k+1} 与 v_1 , v_{m+1} 两个向量的夹 角大小与 GM RES (m)算法收敛速度的关系, 定义 $R_{k+1} = \frac{(r_{k+1} - r_{k+2})}{r_{k+1}}$ 为相邻两个误差向量中后一个 误差向量较前一个误差向量的下降比例.显然误差向 量的下降率 R_{k+1} 反映了 GM RES (m)算法收敛速度 的大小, 当 R_{k+1} 起大时, GM RES (m)算法收敛速度 故快. 从图 2、图 3 可以看出, GM RES (m)算法收敛 速度与误差向量 r_{k+1} 和向量 v_1 的夹角余弦大致成负 线性关系, 而与误差向量 r_{k+1} 与向量 v_{m+1} 的夹角余弦 大致成正线性关系. 值得注意的是, 当误差向量 r_{k+1} 与向量 v_1 夹角余弦接近于 1 时, GM RES (m)算法几 乎出现停滞, 而当误差向量 r_{k+1} 与向量 v_{m+1} 夹角余弦 超过 0.3 时, 算法的收敛速度显著提高.

图 2 R_{k+1} 与误差向量 r_{k+1} 与向量 v₁ 的夹角余弦散点图

Fig. 2 Scatter diagram of R_{k+1} and the cosine of vectors

图 3 R_{k+1} 与误差向量 r_{k+1} 与向量 v_{m+1} 的夹角余弦散点 Fig. 3 Scatter diagram of R_{k+1} and the cosine of vectors r_{k+1} and v_{m+1}

例 2¹⁹ 设 *A* ∈ *R*^{1000×1000} 且为双对角矩阵,其中 主对角元为 1, 2, …, 1000, 上对角元全都是 1.

从图 4 可看出, 例 2 是 GM RES (m)算法收敛的 一个例子, 只需 16次重启就达到了给定的精确度, 且 误差向量的下降率(即收敛速度)比较稳定在一个大 的值附近.事实上从表 1 也可以看出 *r*_{k+1} 与*v*₁、*v*_{m+1} 夹角余弦的大小正好与例 1 中的数值相反, 因此较快 的收敛速度也在情理之中. 另外, 一个值得关注的问 题是, 随着重启次数的增加, *r*_{k+1} 与*v*₁, *v*_{m+1} 夹角余弦 有朝收敛速度慢的方向移动的趋势.

国 4 里 利 / 山 4J 八 数 和 75 里 氾 数 凹 为 数 log 10 (|| r_m || 2) 的关系

Fig. 4 Relationship of restart numbers and residual norms $\log_{10}(||r_m||_2)$

表 1 GMRES(m)算法每次重新启动所产生误差向量范数及 所对应的值

 Table 1
 Error vector norm and it's corresponding value from

 each restarted of GMRES(m)

重新启 动次数 Restar numbers	误差向量 r _{k+1} 范数 Vector norm s of r _{k+1}	r _{k+1} 与 v ₁ 夹角余弦 C on sine	r _{k+1} 与 v _{m+1} 夹角余弦 Cosine
1	9.876281e-01	0.03123154	0. 3237097
2	2.691332e-01	0.27250459	0.3382714
3	9.421787e-02	0.35007897	0.2608604
4	3.383677e-02	0.35913329	0. 2390161
5	1.252233e - 02	0.37008055	0. 2338973
6	4.687057e-03	0.37429587	0. 2269883
7	1.776740e - 03	0.37907374	0. 2282358
8	6.767735e-04	0.38090738	0. 2230957
9	2.592560e-04	0.38307654	0. 2261224
10	9.949717e-05	0.38377957	0.2215470
11	3.829447e-05	0.38377957	0. 2255797
12	1.475344e - 05	0.38526287	0. 2212918
13	5.694296e-06	0.38596404	0. 2259923
14	2.199562e-06	0.38627458	0. 2218386
15	8.508285e - 07	0.38681727	0. 2270088
16	3.293697e-07	0.38711639	0. 2228920

4 结束语

对于GMRES(m)算法而言,误差向量 *r*_{k+1} 在 *v*₁, *v*_{m+1} 两个向量投影的大小直接影响算法的收敛速度. 由性质 1.2 可知, *r*_{k+1} 是 Krylov 子空间基向量 *v*₁, *v*₂, …, *v*_{m+1} 的线性组合,因此算法每次重新启动时, 可以通过选择适当的 *r*_{k+1},改善 *r*_{k+1} 在 *v*₁, *v*_{m+1} 两个 向量的投影来加快算法的收敛速度. 参考文献:

- Saad Y. Iterative methods for sparse linear systems [M]. Boston, MA: The PWS Publishing Company, 1996.
- [2] Saad Y, Schultz M H. GM RES: a generalized minimal residual algorithm for solving nonsymmetric linear systems
 J. SIAM J Sci Stat Comput, 1986, 7: 856-869.
 (下转第 221页 Continue on page 221)

and Systems 1986, 20: 87-96.

- [2] Atanassov K. More on intuitionistic fuzzy sets J. Fuzzv Sets and Systems, 1989, 33: 37-46.
- [3] Atanassov K, Gargov G. Interval-valued intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1989, 31: 343-349.
- [4] Atanassov K. Operators over interval-valued intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1994, 64: 159-174.
- [5] Wei G W. Maximizing deviation method for multiple attribute decision making in intuitionistic fuzzy setting[J]. K now ledge-Based Systems 2008, 21: 833-836.
- [6] Ye J. Fuzzy decision-making methods based on the weighted correlation coefficient under intuitionistic fuzzy environment[J]. European Journal of Operational Research 2010, 205: 202-204.
- [7] Wei G W. GRA method for multiple attribute decision making with incomplete weight information in intuitionistic fuzzy setting[J]. Knowledge-Based Systems, 2010, 23; 243-247.
- [8] Li D F. Multiattribute decision making models and methods using intuitionistic fuzzy sets [J]. Journal of Computer and System Sciences 2005, 70: 73-85.
- [9] Lin L Yuan X H, Xia Z Q. Multicriteria fuzzy decisionmaking methods based on intuitionistic fuzzy sets[J]. Journal of Computer and System Sciences, 2007, 73: 84-

(上接第 217 页 Continue from page 217)

- [3] Joubert W. On the convergence behavior of the restarted GM RES algorithm for solving nonsymmetric linear systems[J]. Numer Linear Algebra Appl 1994, 1: 427-448.
- [4] Cao Z H. A note on the convergence behavior of GM RES[J]. Appl Numer math, 1997, 25: 13-20.
- [5] Van der Vorst H A, Vuik C. The superlinear convergence behavior of GMRES[J]. J Comput Appl Math. 1993, 48: 327-341.
- [6] Arnoldi W E. The principle of minimized iteration in the solution of the matrix eignvalue problem[J]. Quart Appl Math, 1951, 9: 17-29.

88.

- [10] 徐泽水. 区间直觉模糊信息的集成方法及其在决策中的应用[]. 控制与决策, 2007, 22(2): 215-219.
- [11] 卫贵武. 一种权重信息不完全的区间直觉模糊数多属性决策方法[]. 统计与决策, 2008, 8: 70-71.
- [12] Ye J. Multicriteria fuzzy decision-making method based on a novel accuracy function under interval-valued intuitionistic fuzzy environment[J]. Expert Systems with Applications 2009, 36: 6899-6902.
- [13] Ye J. Multicriteria fuzzy decision-making method using entropy weights-based correlation coefficients of interval-valued intuitionistic fuzzy sets[J]. Applied Mathematical Modelling, 2010, 34(12): 3864-3870.
- [14] Ye F. An extended TOPSIS method with interval-valued intuitionistic fuzzy numbers for virtual enterprise partner selection[J]. Expert Systems with Applications 2010, 37: 7050-7055.
- [15] Lakshmana G N V, Muralikrishnan S, Sivaraman G.
 Multi-criteria decision-making method based on interval
 -valued intuitionistic fuzzy sets[J]. Expert Systems with Applications, 2011, 38(3): 1464-1467.
- [16] 刘锋,袁学海. 模糊数直觉模糊集[J]. 模糊系统与数 学,2007,21(1):88-91.

(责任编辑: 尹 闯)

- [7] Simoncini V. A new variant of restarted GM RES[J]. Numer Linear Algebra Appl 1999, 6: 61-77.
- [8] 全忠, 向淑晃. 基于 GM RES 的多项式预处理广义极小 残差法[J]. 计算数学, 2006, 4: 365-376.
- [9] Morgan R B. A restarted GM RES method augmented with eigenvectors [J]. SIAM J Matrix Anal Appl, 1995, 16, 1154-1171.

(责任编辑: 尹 闯)