I PG RF2% Guangxi Sciences 2010,17(3) :247~254

Fitting Evolutionary Process of Polymerase Acidic
Protein Family from Influenza A Virus with Analytical
Solution of System of Differential Equations”
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Abstract : We fitted the evolution of polymerase acidic protein family from influenza A virus using a
mathematical model: (i) we used the amino-acid pair predictability to quantify 2433 polymerase
acidic proteins isolated from 1918 to 2008 to represent their evolution, (ii) we determined if the
uphill half-life is similar to the downhill one as a pre-request for fitting, (iii) we used the analytical
solution of system of differential equations to fit this evolution, and (iv) we simulated the possible
evolutionary process from 2009 to 2018 using the obtained fitted parameters. The results showed a
good-of-fit for polymerase acidic protein family and its different subtypes, indicating that the study
on protein evolution begins to move forward dynamically mathematical modeling from passively
empirical data-collection.
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The unpredictable mutations in influenza A
viruses frequently threaten the world with possible flu
pandemics or epidemics, this is so because we do not

have many ways to predict the mutation positions,
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would-be-mutated amino acids, and when a mutation
would occur™ %, In broad sense, this is so because we
do not know much about the evolution of influenza A
virus in a predictable form, although we have already
accumulated a large amount of samples of influenza A
viruses at different time points in different
geographical locations™"’.

For better understanding of the evolution of
influenza A virus, we not only need to have a
considerable amount of data, but also we need to find

out a mathematical way to describe this evolutionary
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process, then we would be in the position to have a
basic concept where the influenza A virus would be
likely to go, because scientific history clearly shows
that a mathematical description is a landmark for the
development of scientific discipline.

The evolution of influenza A virus is a process of
mutations along the time course, thus the first task is
to represent influenza A viruses along the time course.
Actually the influenza A virus contains ten protein
families, therefore it is necessary to represent each
protein family over time. In coordinates, it should be
that x -axis is the sampled time while y -axis marks
the proteins in terms of meaningful values because it
would be meaningless if we use their accession number
for y -axis.

This means that we need a way to meaningfully
represent a protein family along the time course,
which can be done using the computational mutation
approach developed by our group™. Thereafter, we
have attempted to use the fast Fourier transform to

evolution of
[11,12]

determine the periodicity in the

hemagglutinins from influenza A viruses
Very recently, we have explored the possibility to

use a system of differential equations to describe the

evolution of hemagglutinin family from influenza A

virust'®,  because this mathematical description
reasoned the underlined mechanism for
evolution™~1%,  The basic assumption is that each

mutation literally brings in a mutating amino acid and
takes away a mutated amino acid. The difference
between bring-in-amino-acid and take-away-amino-
acid can be quantified using our approach in terms of
randomness (entropy )t ™% 11~13) wwhich constructs a
standard mass-balance relationship suited for the
description of differential equationt'®).

The polymerase acidic protein (PA) is one of ten
proteins found in influenza A virus and plays an
important role in all RNA synthesizing activities
associated with influenza virus'”! as they replicate and
transcribe ~ their segmented negative-sense single-
stranded RNA genome in the nucleus of the infected
host cell. The PA subunit is also involved in the
conversion of RNA polymerase from transcriptase to

18] and contains the endonuclease active site.

replicase
A recent study strongly implicates the viral RNA
polymerase complex as a major determinant of the
pathogenicity of the 1918 pandemic virus®l.
Therefore, it is very meaningful to use the
analytical solution of system of differential equations,

which describe the mutation process for a protein
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family, to fit the evolutionary process of PA proteins
from influenza A viruses, in order to pave the way for
timing mutation and understanding the underlined
mechanism of protein evolution from influenza A

virus.
1 Materials and methods

1.1 Data

5165 full-length PA proteins of influenza A
viruses sampled from 1918 to 2008 were obtained from
the influenza virus resourcest'®. After excluded
identical sequences, 2433 PA proteins were actually
used in this study.

1.2 Presentation of PA evolution

We use the amino-acid pair predictability to
convert each PA protein as a single number that really
represents the instinct of proteint!~% 13 For
example, a swine HIN1 influenza virus was isolated in
1976, and strain A/swine/Tennessee/15/1976
(HIN1 ). 1Its PA protein (accession number
ABQ45443 ) has 716 amino acids. The first and
second amino acids can be counted as an adjacent
amino-acid pair, the second and third as another
adjacent amino-acid pair, the third and fourth, until
the 715th and 716th, thus there are totally 715
amino-acid pairs. This PA protein has 39 aspartic acids
(D) and 75 glutamic acids (E) : if the permutation can
predict the appearance of amino-acid pair DE, it must
appear 4 times (39/716 X 75/715 X 715 = 4. 09);
actually it does appear four times, so the pair DE is
predictable. By contrast, this protein has 60 leucines
(L) : if the permutation can predict the appearance of
amino-acid pair LL, it must appear five times (60/716
X 59/715 X 715 =4. 94); however, it appears nine
times in realty, so the pair LL is unpredictable. In this
way, all amino-acid pairs in ABQ45443 PA protein
can be classified as predictable and unpredictable,
which are 28.53% and 71.47%.

Another swine influenza virus was isolated in
1979, and its PA protein ( accession number
ABR28643) has only one amino acid different from
ABQ45443 one at
predictable and unpredictable portions are 29. 51 % and

position 323. However, its
70. 49%. Thus, the amino-acid pair predictability
distinguishes one PA protein from another in terms of
numbers rather than the letters that represent amino
acids in proteins.

In this manner, we can use 28. 53% to represent
ABQ45443 PA protein and 29. 51% to represent
ABR28643 PA protein in a coordinates, where x -axis
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is the time of isolated year and y-axis is the
predictable portion. This method is applied to all 2433
PA proteins involved in this study.
1. 3  Analytical solution of system of differential
equations

In our previous studies, we have shown that the
possibly analytical solution for n differential equations is
a sum of decaying exponential and sinusoidal functions

y(@) = ZAfe_kf’COS(a;t + @) + C, where y is the
i=1

predictable portion over time, A,a and % are
parameters, ¢ is time, @is phase difference, and C is a
constantt'*],
1.4 Fitting

The above analytical solution suggests that there
was an input at zero time, then the exchange of
entropy from generation to generation results in
decaying but

fluctuating. The symmetry in the

fluctuation is an important feature, indicating the
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Fig. 1

uphill half-life is similar to the downhill one. All of
these are the basis for fitting'®, which was conducted
using SigmaPlot.
1.5 Statistics

The Mann-Whitney U -test was used to compare
the difference between uphill and downhill half-life,
and P < 0. 05 was considered significant.

2 Results

Figure 1 shows the evolutionary process of PA
proteins over 90 years in terms of all 2433 PA proteins
and their subtype classifications, which can be read as
follows. For example, the solid curve in the top panel
of figure 1 represents the evolution of 2433 PA
proteins from 1918 to 2008, and each point is the
mean value of predictable portions of all PA proteins in
a given year with its standard deviation (vertically
grey line). The similar reading can be applied to other

panels.
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Evolution of PA proteins with respect to all PA proteins and different substypes from influenza A viruses

The solid curves from 1918 to 2008 are the evolution of PA proteins in terms of randomness (entropy),the filled cycles with
vertical solid lines are mean =+ SD of predictable portion in all the PA proteins in given year,the dotted curves from 1918 to 2008 are

fitted curves,and the dotted curves from 1918 to 2018 are the simulated curves representing the evolution of PA proteins in the

future.
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With decaying exponential, the half-life is 7'/, =

ln(kZ) — 0- 296 ] where k 15 ln(ypeak) = ln(ytrough) ,

Linterval

which is the downhill half-life. Symmetrically, we can
also compute the uphill half-life. All possibly stratified
peaks and troughs are recorded to compute the half-
life. Figure 2 displays no statistical difference between
the uphill half-lives and downhill ones,which provides
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Fig. 2 Comparison of uphill half-life with downhill half-life

The data are presented as median with interquatile range.
No statistical differences were found in the half-life between
uphill and downhill (Mann-Whitney U -test).
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the theoretical basis for fitting. The calculated half-life
can also serve as initial estimates for fitting.

The dotted curves in Figures 1 are fitted curves
using the analytical solution, whose fitted parameters
are listed in Table 1. As can be seen, the dotted
curves generally are much approximate to the
evolutionary trend presented by the solid curve,
indicating that the analytical solution can present the
evolutionary process of PA proteins from influenza A
viruses. In general, the fitted results differ in different
subtypes. For example, the fitted values quite match
to their actual ones in H4, H5, H7, H10, N3, N7
and N9 subtypes.

After fitting, an important step is to determine if
the conducted fitting is good, which can generally be
done using many different methods™ ?!. For
example, the residuals reflect the difference between
actual and fitted values. Figures 3, 4 and 5 show the
residual versus the time, fitted value, and actual
value, respectively. In Figure 3, we cannot find the
residuals either increase or decrease over time. In other
words we cannot find any trend of residual along the
time course suggesting a good-of-fit. In Figure 4, we
also cannot find the residuals either increase or
decrease over fitted value suggesting a good-of-fit
again. In Figure 5, we can see the trend that the
residuals increase as actual values increase in some
cases, which is understandable because some samples
might be located far beyond the general trend found by
fitting and far beyond the mean =+ SD for the samples
in the given year.

With the obtained fitted parameters, we can
simulate the evolution of PA proteins in the future,
and the dotted curves in Figure 1 from 2009 to 2018
are simulated evolutionary process of PA proteins,
which can be understood as possible trends. Of
course, this is only initial attempt to simulate the
evolution in the future, and much more work is
needed in this regard.

3 Discussion

It is important to understand the mechanism of
evolution, and it is also equally important to describe
the evolutionary process, thus in this study we
attempted to use the analytical solution of system of
differential equations to fit the evolutionary process of
PA family from influenza A virus. For the past, the
mathematical description of evolution can help us
understand all factors which impact the evolution. For
the future, the mathematical description can help us

Guangxi Sciences, Vol. 17 No. 3, August 2010



Table 1 Fitted parameters in analytical solution of system of differential equations

Subtype 4, ky a; [ A ky a [ A k3 a3 ? C R?
All —0.752 0.034 2.681 —108.381—40.634 0.136 0. 009 1. 617 0.527 0. 015 1.081 —0.006 26.689 0.728
H1 —18.995 0.113 0.020 1.700 —0.528 0.000 49.301 7.242 0. 395 0. 000 1.325 —3.682 25.960 0.711
H2 —1.269 0.000 0.416 —4.841 —2.472 0.000 1.126 2. 361 2. 239 0. 000 1.093 2.753 26.096 0.576
H3 —0.331 0.000 1.226 —11.057 0.864 0.032 2.625 —22.016 3.612 0. 149 0.364 —8.474 26.740 0.469
H4 0. 624 0.000 —4.601 95.344 —45.051 0.861 3.144 —4.929 — — — = 26.037 0.982
H5 —6.333 0.449 1.492 —0.681 —1.828 0.099 0.414 3.318 —3.391 0.304 2.521 5.752 27.103 0.996
H6 —0.713 0.000 0,215 10. 173 1.:356 0. 043 0. 909 0.637 4.567 0.144 0.571 3. 459 26.896  0.727
H7 —8.666 0.000 1. 987 4.750 —6.345 0.381 —18.853 —98.498 —9.492 0.019 1. 965 8.034 26.288 0.878
H9 —0.804 0.016 0.571 —14.257 —6.979 0.000 0.039 3.015 —0.659 0.000 —10.833 —57.939 20.735 0.721
H10 —0.472 0.035 1. 361 1.276 —1.669 0.012 0. 340 7.360 —1.221 0.000 0.488 9. 539 26.040 0.872
Hi11 2.903 0.115 0.278 10.288 1.213 0. 000 0.693 4. 463 0.668 —0.033 1.134 —0.979 25.643 0.606
N1 =—7.732 0.224 0. 849 0.979 —0.738 0.030 0.793 4. 002 1117 0. 009 0. 147 4.950 27.408 0.754
N2 —0.380 0.000 1. 045 1.171 —25.950 0.048 0. 000 1. 676 1. 236 0. 051 0.476 3.893 26.278 0.734
N3 —3.884 0.394 —2.218 13.275 1.793 0.000 16.779 6.765 1. 851 0. 062 1.303 —1.565 26.606 0.968
N4 —1.058 0.000 0.438 5.569 0. 395 0. 000 1.148 —2.163 0.475 0. 000 7.865 10.510 26.614 0.676
N5 2. 828 0.030 —0.201 2.981 0. 891 0. 000 1.035 —2.046 2.296 0. 088 0. 340 4.266 25.862 0.657
N6 —0.851 0.000 —1.810 —2.658 —1.905 0.145 0.909 0. 870 1. 336 0.033 1. 244 5.531 26.489 0.621
N7 4.117 0.000 —18.450—41.978 3.121 0. 000 0. 430 4. 696 0. 821 0. 089 1.072 —4.335 26.633 0.878
N8 —0.630 0.000 —10.178 138.003 —2.376 0.134 0.217 3. 543 0. 467 0.000 —1.672 —13.896 25.957 0.405
N9 —1.813 0.082 1.638 14.247 17.538 0.000 —38.128 —20.505 —2.715 0.240 —0.699 —7.177 25.772 0.923
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Fig. 4 Residual versus fitted value of predictable portion for all and different subtypes of PA proteins from influenza A virus

For
example, we would know whether and when a species

know where the biological evolution will go.

will extinct or be prosperous at species level'*), while
we would know when a protein family will mutate
more at protein level.

For our mathematical description, we do not
require uncountable underlined mechanism driving the
protein evolution because we use the randomness
(entropy ) to cooperate them alll'~% 1~ thus it
would be easy to correlate other factors that affect the
evolution and can be modeled as perturbation'®*). This

the systematical and mathematical

[14~16]

may warrant
description of evolution

In Figures 1, the solid curves actually represent
the measured randomness (entropy) in PA proteins
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along the time course. The fluctuation of the entropy
in PA proteins suggests the exchange of entropy
between PA proteins and their environments, so
mutations play the role to balance the entropy between
proteins and their environments, and drive evolution
going on. On the other hand, the decaying of the
entropy in PA proteins suggests the discharge of the
entropy that was stored at the very beginning of
formation of the first PA protein, and the exchange of
entropy among generations of PA proteins. In both
cases, we would expect to see a similar length for both
downhill half-lives and uphill ones, otherwise we
would expect to have seen irregular half-lives if
random perturbations added this

would be to

evolutionary process of PA family.
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Fig.5 Residual versus actual value of predictable portion for all and different subtypes of PA proteins from influenza A virus

An important application of this differential
description of PA evolution is that we can use this
analytical solution with fitted parameters to predict the
where the fluctuation
Then it would be
possible to connect the spike of mutations with possible

PA evolution in the future,
would be a spike of mutations.
flu outbreaks. This approach would have some
advantage over our approach using fast Fourier
transform to stratify the evolutionary process, and
then to compare each stratified segments to time the
mutation'! ® 11+ 121,

The results of this study demonstrate that the

J&AF 201058 A F17%5% 38

analytical solution can fit the PA evolution from
which

predicting its general trend. Currently, the evolution

influenza A virus, is very important for
of a protein or its gene has been conducted according
to all sequencing data, which can provide information

on the phylogenetic trees, evolutionary rate and

(28], our study

selective pressure In this context,
provides the information on dynamic process because
neither phylogenetic tree nor evolutionary rate nor
selective pressure can easily and clearly be represented
along the time course, which consequently is hard to

be modeled. Thus, our approach can be considered the
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first

step to analyze the evolution of protein family

from empiric description to mathematical modeling*.
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