广西科学 Guangxi Sciences 2010, 17(1): 32~ 35

On 𝔅 --sn-metric Space^{*} 关于𝔅 --sn-度量空间

WANG Pei¹, LI Zhong-min², LIU Shi-qin³ 王 培¹,李忠民²,刘士琴³

(1. Department of Mathematics and Computer Science, Yulin Normal University, Yulin, Guangxi, 537000, China; 2. The Second Middle School of Qingtian, Qingtian, Zhejiang, 323900, China; 3. Department of Mathematics, Hengshui University, Hengshui, Hebei, 253811, China)
(1.玉林师范学院数学与计算机科学系,广西玉林 537000, 2.青田二中,浙江青田 323900, 3. 衡水学院数学系,河北衡水 253811)

Certain images of metric spaces have been studied extensively in the past years^[1]. It plays a very important role in general topology. There are many excellent results which have been made by many people. C. Liu, S. Lin^[2] defined \mathfrak{S}_0 -weak base. It is very well connect weak base and \mathfrak{S}_0 -weak base. C. Liu and S. Lin^[2] prove that X is a quotient, countableto-one image of a metric spaces if and only if X has a point-countable and point-countable \mathfrak{S}_0 -weak base. From this, they generalized the \mathfrak{S}_0 -weak base.

From their definitions, we easy know that a weak base is an \mathfrak{S}_0 -weak base But \mathfrak{S}_0 -weak base may not be weak base. We will give a new concept as a generalization of \mathfrak{S}_0 -weak base, and some characterizations of it. Therefore we generalize C. Liu's and S. Lin's results.

作者简介: 王 培 (1980-), 男, 助教, 主要从事一般拓扑学的研究。

Throughout this paper, all spaces are regular T_1 , all maps are continuous and onto, and N is the set of positive integer numbers. Sequence $\{x_n: n \in N\}$, sequence $\{P_n: n \in N\}$ of subsets and sequence $\{\mathcal{P} \in N\}$ of collections of subsets are abbreviated to $\{x_n\}$, $\{P_n\}$ and $\{\mathcal{P}_n\}$ respectively. For terms which are not defined here, please refer to reference [2] and related references.

1 Definitions

Definition 1.1 Let \mathscr{B} be a family of subsets of a space X. \mathscr{B} is said to be an $\mathfrak{S}_0 - \mathfrak{s}n$ -network for X if $\mathscr{B} = \bigcup \{\mathscr{B}_x(n): x \in X, n \in N\}$ satisfies

(1) for each $x \in X$, $n \in N$, $\mathcal{B}_x(n)$ is a network at x. It is closed under finite intersections and $x \in \bigcap \mathcal{B}_x(n)$.

(2) *L* is a sequence converging to $x \notin L$ in *X*. Then there exist a subsequence L' of *L* and $n \in N$ such that L' is eventually in $B_x(n_0)$ for any $B_x(n_0) \in \mathscr{B}_x(n_0)$.

X is called \mathfrak{S}_{0} -sn -weakly first-countable in the sense of Sirois-Dumais^[3] if X has an \mathfrak{S}_{0} -sn -network

收稿日期: 2009-06-08

修回日期: 2009-10-13

^{*} This project was supported by Guangxi Province Science Foundition (No. 0728035).

 $\mathscr{B} = \bigcup \{\mathscr{B}_x(n): x \in X, n \in N\}, \mathscr{B}_x(n) \text{ is countable for } each x \in X, n \in N.$

A space X is called \mathfrak{S}_{0} -sn -metric space if X has a ^e -locally finite \mathfrak{S}_{0} -sn -network. \mathfrak{S}_{0} -sn -network is a generalization of \mathfrak{S}_0 -weak base and *sn* -network. It is very easy to see that \Re_0 -weak base doesn't imply sn network. For example, Sk has a countable So -weak base, but it does not have a countable sn -network (since Frechet space with a countable sn -network has a countable base). sn -network does not imply \mathfrak{S}_0 -For example, Uk (stone-eech base. w eak compactification of k) is $\$_{0-sn}$ -weakly first-countable since every convergent sequence is finite, but it is not \mathfrak{R}_0 -weakly first-countable, since it is not a sequential space (a sequential space in which every convergent sequence is finite is a discrete space).

Definition 1. 2^{4} Let X be a space, $P \subseteq X$ is called a sequential neighborhood of x in X, if each sequence converging to x in X is eventually in P.

Definition 1. $\mathbf{3}^{(5)}$ Let $f: X \rightarrow Y$ be a sequentially quotient map if whenever $\{y_n\}$ is a convergent sequence in Y, there is a convergent sequence $\{x_k\}$ in X with each $x_k \in f^{-1}(y_{n_k})$.

Definition 1. 4 Let \mathscr{P} be a cover of X, then \mathscr{P} is called a k -network for X if for any compact set K and for any open set U such that $K \subset \bigcup \mathscr{P}' \subset U$ for some finite $\mathscr{P}' \subset \mathscr{P}$. A space X is called $\overset{\diamond}{>}$ -space if X has $\overset{e}{-}$ -locally finite k -network.

2 Main results

In this section, we give some characterizations about \mathfrak{S}_0 -sn -network, and the relations among \mathfrak{S}_0 weak base, \mathfrak{S}_0 -sn -network, cs -network, cs^* network are discussed.

Lemma 2. $\mathbf{1}^{[2]}$ X has a point-countable \mathfrak{S}_0 weak base $\mathscr{B} = \bigcup \{\mathscr{B}_x (n): x \in X, n \in N\}$. L be a sequence converging to $x \in L$ in X. Then there exists a subsequence L' of L and $n_0 \in N$ such that L' is eventually in $B_x(n_0, m)$ for any $m \in N$.

Remark 2.1 From the Lemma 2.1, it is easy to know that point-countable \mathfrak{S}_0 -weak base is \mathfrak{S}_0 -sn - network.

Remark 2. 2 From the definition of $\mathfrak{S}_0 - sn - network$, it is easy to know that $\mathfrak{S}_0 - sn - network$ is cs^* -network.

Theorem 2.1 Point-counable \mathfrak{S}_0 -weak base is equivalent to a sequential space with a point-countable \mathfrak{S}_0 -sn -network.

Proof Sufficiency. Let $\mathscr{B} = \bigcup \{\mathscr{B}_x (n) : x \in X, n \in N\}$ be a point-countable \mathfrak{S}_0 -weak base of a space X. From Lemma 2. 1, it is easy to see that \mathscr{B} is point-countable \mathfrak{S}_0 -sn -network of a space X. Since X has point-countable \mathfrak{S}_0 -weak base, then X is \mathfrak{S}_0 -weak ly first countable space. Therefore X is a sequential space.

Necessity. X is a sequential space with a pointcountable \mathfrak{S}_0 -sn -network \mathcal{B} . We shall prove that \mathcal{B} is a Point-counable \mathfrak{S}_0 -weak base. Since \mathcal{B} is a point-countable \mathfrak{S}_0 -sn -network, for each $x \in X, n \in$ $N, \mathcal{B}_x(n)$ is closed under finite intersections and $x \in$ $\bigcap \mathcal{B}_x(n)$. If U is an open set of X and for each $x \in$ $U, \mathcal{B}_x(n)$ is a network at x, there exists $n \in N$ such that $B_x(n) \subset U$. For any $x \in X, n \in N$, there exists $B_x(n) \in \mathcal{B}_x(n)$ such that $B_x(n) \subset U$. We only need to prove that U is an open set of X.

If U is not open in X, then U is not sequentially open set in X. There exists a convergent sequence L in $X \setminus U$ converging to a point $x \in U$. Since \mathcal{B} is an $\mathfrak{S}_0 -\mathfrak{s} n$ -network, there exist $\mathfrak{n} \in N$ and a subsequence L' of L such that L' is eventually in any elements of $\mathcal{B}_x(\mathfrak{n}_0)$. Therefore there exists $B_x(\mathfrak{n}_0) \in \mathcal{B}_x(\mathfrak{n}_0)$ such that $B_x(\mathfrak{n}_0) \subset U$. Then L' is eventually in U. U is a sequentially open set. So U is an open set of X.

Theorem 2.2 Let $\mathcal{B} = \bigcup \{\mathcal{B}_x(n): x \in X, n \in N\}$ be an \mathfrak{S}_0 -sn -network of a space X and A a subset of X. Then $\bigcup \{A \cap B_x(n): B_x(n) \in \mathcal{B}_x(n)\}$ is an \mathfrak{S}_0 -sn -network of A.

Proof For any $x \in A$ and $n \in N$. It is easy to see that $\{A \cap B_x(n): B_x(n) \in \mathcal{B}_x(n)\}$ is closed under finite intersections and $x \in (\cap \mathcal{B}_x(n)) \cap A$.

For any $x \in A$ and $n \in N$, $\{A \cap B_x(n): B_x(n) \in \mathcal{B}_x(n)\}$ is a network at x in A. In fact, if U is open in A, A is a closed subset of X, there exists an open subset V of X such that $U = V \cap A$. For any $x \in U$ and $n \in N$, there is a $B_x(n) \in \mathcal{B}_x(n)$ such that $x \in B_x(n) \subset V$. Therefore $x \in B_x(n) \cap A \in \{B_x(n) \cap A: B_x(n) \in \mathcal{B}_x(n)\}$ and $B_x(n) \cap A \subset U$. We shall check that $\bigcup \{A \cap B_x(n): B_x(n) \in \mathcal{B}_x(n)\}$ is an $\bigotimes 0$ -sn - network of A.

Let L be a sequence converging to $x \notin L$ in A.

广西科学 2010年 2月 第 17卷第 1期

Then L be a sequence converging to $x \notin L$ in X, since $\mathscr{B} = \bigcup \{\mathscr{B}_x (n) : x \in X, n \in N\}$ be an $\mathfrak{S}_0 - sn$ -network of a space X. There exists a subsequence L' of L and n_0 $\in N$ such that L' is eventually in $B_x(n_0)$ for any $B_x(n_0) \in \mathscr{B}_x(n_0), L \subseteq A, \text{ so } L \subseteq A, L' \text{ is eventually in}$ $B_x(n_0) \cap A$ for any $B_x(n_0) \in \mathscr{B}_x(n_0)$. Therefore $\bigcup \{A \cap B_x(n) : B_x(n) \in \mathcal{B}_x(n)\} \text{ is an } \mathfrak{S}_0 - sn$ network of A.

Lemma 2. $2^{[1]}$ Let \mathscr{P} be a ^e-hereditarily closure-preserving collection of subsets of a space X. If \mathscr{P} is a cs^* -network, then \mathscr{P} is a k-network of X.

Theorem 2.3 The following are equivalent for a space X.

(1) X is an \mathfrak{S}_0 -sn -metric space

(2) X has a ^e -discrete \mathfrak{S}_0 -sn -network;

(3) X has a ^e-locally finite $\Im \circ -sn$ -network;

(4) X is an \mathfrak{S}_{0} -sn -weakly first-countable and S -space

Proof From the definition, it is easy know (1) \leftrightarrow (3), and (2) \rightarrow (3) is obvious.

We prove $(3) \rightarrow (4)$. Let \mathscr{B} be a ^e-locally finite \mathfrak{S}_{0} -sn -network, then \mathscr{B} is a point-countable \mathfrak{S}_{0} -sn -network, X is an \mathfrak{S}_{0} -sn -weakly first-countable space. From Remark 2. 2, \mathcal{B} is a cs^* -network, \mathcal{B} be a ^e-locally finite \Re_{0} -sn-network, then \mathscr{B} is a ^ehereditarily closure-preserving \mathfrak{S}_0 -sn -network. From Lemma 2. 2, X has a ^e-hereditarily closure-preserving k -network. So X be an \Re -space.

Now we prove (4) (2). X is an \Re -space, by Theorem 4 in reference [6], we can assume that X has a $^{\mathrm{e}}$ -discrete σ -network \mathscr{P} , where \mathscr{P} is closed under finite intersections. Let $\bigcup \{\mathscr{B}_x(n): x \in X, n \in N\}$ be an \mathfrak{S}_0 -sn -network of X. Then for each $x \in X, n \in \mathbb{R}$ N, since X is an \mathfrak{S}_0 -sn -weakly first countable, $\mathscr{B}_x(n)$ is countable, here each $\mathscr{B}_x(n) = \{B_x(n,m): m \in N\}$ with $B_x(n,m+1) \subseteq B_x(n,m)$ for each $m \in N$. For each $n \in N$, let $\mathscr{P}_x(n) = \{P \in \mathscr{P}: B_x(n, m) \subseteq P \text{ for } n \in \mathbb{P}\}$ some $m \in N$ }. Then $\mathcal{P}_x(n)$ is closed under finite intersections $\bigcup \{ \mathscr{P}_x(n) : x \in X, n \in N \}$ is a ^e-discrete collection.

We shall prove that $\mathscr{P}_{x}(n)$ is a network of x in X. We only need to prove that there exist $m \in N, k \in$ N and fixing a neighborhood U of x in X such that $B_x(n,m) \subseteq P_k$, therefore $P_k \in \mathscr{P}_x(n)$ and $P_k \subseteq U$. If not, there is a neighborhood U of x in $X, P \not\subset U$ for

each $P \in \mathscr{P}_x(n)$. Write $\{P \in \mathscr{P} : x \in P \subseteq U\} = \{P_k: k\}$ $\in N$ such that $B(n,m) \not\subset P_k$ for any $m, k \in N$. Pick $x_{mk} \in B(n,m) \setminus P_k$ for each $m \ge k$. Let $y_i = x_{mk}$, where i = k + m(m - 1)/2. Then the sequence $\{y_i\}$ converges to x in X because $\{B_x(n,m): m \in N\}$ is a decreasing network of x in X. Since \mathcal{P} is a cs -network of X, there exists $k, j \in N$ such that $\{y: i \geq j\} \subset P_k$. Pick $i \ge j$ such that $y_i = x_{mk}$ for some $m \ge k$, then x_{mk} $\in P_k$, a contradiction.

Put $\mathscr{B} = \bigcup \{\mathscr{P}_x (n) : x \in X, n \in N\}$. We shall prove that \mathscr{B} is an \mathfrak{S}_{0} -sn -network. Let L be a sequence converging to $x \notin L$ in X. Since $\bigcup \{\mathscr{B}_x(n)\}$: $x \in X, n \in N$ be an \mathfrak{S}_0 -sn -network of a space X. There exists a subsequence L' of L and $n_0 \in N$ such that L' is eventually in $B_x(n_0, m)$ for any $B_x(n_0, m) \in$ $\mathscr{B}_x(n_0)$. But $B_x(n_0,m) \subseteq P_x(n_0)$ for some $m \in N.L'$ is eventually in $P_x(n_0)$ for any $P_x(n_0) \in \mathscr{P}_x(n_0)$. Therefore $\mathscr{B} = \bigcup \{\mathscr{P}_x (n) : x \in X, n \in N\}$ is an \mathfrak{S}_0 -sn – network of X.

Y. $Ge^{[7]}$ give a equivalent characterization about *sn* -metric space. From his proof, we ask the following question naturally.

Question 2.1 Is a space X with e^{-1} hereditarily closure-preserving $\Re_0 - sn$ -network, $\Re_0 - sn$ -weakly first-countable space and S -space.

Theorem 2.4 X is a sequentially quotient, countable-to-one image of a metric space if and only if X has point-countable \Re_0 -sn -network.

Proof Necessity. Let $f: X \rightarrow Y$ be a sequentially quotient, countable-to-one map from a metric space M onto the space X. Let \mathcal{B} be a point-countable base for *M*. For each $y \in M$, let $\mathscr{B}_y \subset \mathscr{B}$ be a countable, decreasing local base at y in M. Put $\mathscr{B}' = \{\mathscr{B}_y: y \in \mathcal{B}_y\}$ M}. Then \mathcal{B}' is a point-countable family of M. Since f is a countable-to-one map, $f(\mathcal{B}')$ is a pointcountable in X. We shall prove that $\bigcup f(\mathscr{B}')$ is an \mathfrak{S}_{0} -sn -network.

For each $y \in M$, let $\mathscr{B}_y = \{B_y, i \in N\}$ with each $B_{y,i+1} \subseteq B_{y,i}$. For each $x \in X$, let $f^{-1}(x) = \{x_{i}\}$ $n \in N$ }. Because f is countable-to-one map, let $\mathscr{P}_{x}(n) = f(\mathscr{B}_{x_{n}})$. Then $\bigcup f(\mathscr{B}') = \bigcup \mathscr{P}_{x}(n): x \in$ $X, n \in N$ }. Let U be open in X, for each $x \in U, n \in$ $N, x_n \in f^{-1}(U)$, then $B_{x_n,i} \subset f^{-1}(U)$ for some $i \in N$, thus $f(B_{x_n,i}) \in \mathscr{P}_x(n)$ and $f(B_{x_n,i}) \subseteq U.L$ be a sequence converging to x in X f is a sequentially

Guangxi Sciences, Vol. 17 No. 1, February 2010

quotient map, there exists sequence S in M convergent to $x_{n_o} \in f^{-1}(x)$. For any $\notin N, B_{x_{n_0}}, \notin \mathcal{B}_{x_{n_0}}$, from the Lemma 2 1, it is easy to see that $B_{x_{n_0},i}$ is a sequence neighborhood of x_{n_0}, S is eventually in $B_{x_{n_0},i}$ for any $i \in$ N, so f(S) is eventually in $f(B_{x_{n_0},i})$ for any $i \in N$ and $f(B_{x_{n_0},i}) \in \mathcal{P}_x(n^0), f(S)$ is a subsequence of L and f(S) is eventually in any elements of $\mathcal{P}_x(n^0)$. Therefore $f(\mathcal{B}')$ is an \mathfrak{H}_0 -sn-network.

Sufficiency. Let $\mathscr{B} = \bigcup \{\mathscr{B}_x(n) : x \in X, n \in N\}$ be a point-countable \mathfrak{S}_{0} -sn -network. Each $\mathscr{B}_{x}(n)$ = $\{B_x(n,m): m \in N\}$ with each $B_x(n,m+1) \neq B_x(n,m+1)$ m) for each $m \in N$. Then any infinite subsequence \mathscr{B}_x of $\{B_x (n,m): m \in N\}$ is a network at x in X for each x $\in X$ and $n \in N$. We rewrite $\mathscr{B} = \{B: T \in I\}$. Endow I with discrete topology and let I_i be a copy of I for each $i \in N$. For convenience sake, two families $\{P_n: n \in N\}$ and $\{Q_n: m \in N\}$ of subsets of a space are said to be cofinal if there exists $n_0, m_0 \in N$ such that $P_{n_0^+} = Q_{n_0^+}$ i for every $i \in N$. Put $M = \{T = (T_i)\}$ $\in \prod_{k \in N} I_k \ \{B_i, i \in N\}$ is cofinal to $\mathscr{B}_{x(T)}(n)$ for som ex (T) $\in X, n \in N, \{B_T: i \in N\}$ is a network of x(T) }. Define $f: M \rightarrow X$ as f(T) = x(T). It is easy to see that f is well-defined and onto because X is T_2 and each $\mathscr{B}_x(n)$ is a network of x in X for each $n \in N$. And $f(T) = \bigcap_{\in N} B_T$ for each $T = (T) \in M$. Notice that \mathscr{B} is point-countable, then f is countable-to-one. Also it is easy to prove f is continuous. We shall prove that f is sequentially quotient map.

Let $\mathscr{B} = \bigcup \{\mathscr{B}_x (n): x \in X, n \in N\}$ be a pointcountable $\otimes_{0} -sn$ -network. It is easy to see that L be a sequence converging to $x \notin L$ in X. Then there exists a subsequence L' of L and $n_0 \in N$ such that L' is eventually in $B_x (n_0, m)$ for any $m \in N$. For each $i \in N$ take $\mathbb{T} \in I_i$ with $B_i^T = B_x (n_0, i)$. Let $\mathbb{T} = (\mathbb{T})$, then \mathbb{T} $\in M$. For each $k \in N$, put $n_k = \min\{m \in N: x_k \notin B_x (n_0, m)\}$. Let $z_k = (\mathbb{U}(k)) \in \prod_{e \in N} I_i$ as follows if $i < n_k$, pick $\mathbb{U}(k) \in I_i$ with $B_{\mathbb{U}_i(k)} = B_x (n_0, i)$; otherwise pick $\mathbb{U}(k) \in I_i$ such that $B_{\mathbb{U}_i(k)} = B_{x_k} (1, i-n_k + 1)$. Then $\{B_{\mathbb{U}_i}(k): i \in N\}$ is cofinal to $\mathscr{B}_{x_k} (1)$, thus $z_k \in M$ and $f(z_k) = x_k$. On the other hand, for each $i \in N$ there exists $k_0 \in N$ such that $x_k \in B_x (n_0, i)$. Then $i < n_k$ when $k \ge k_0$ by the definition of n_k , so U(k) = T. It means that $\{B_{U_i}(k): i \in N\}$ converges to T_i in the discrete space I_i . Hence z_k converges to T in M. Therefore, f is sequentially quotient map.

Remark 2.3 \mathfrak{S}_{0} -sn -network may not be sn network. If not, point-countable \mathfrak{S}_{0} -sn -network is point-countable sn -network. A space with pointcountable sn -network is sequential space, then pointcountable sn -network is point-countable weak base. So point-countable \mathfrak{S}_{0} -sn -network is point-countable weak base^[8]. This is not true.

Remark 2. 4 \mathfrak{S}_{0} -sn -network may not be cs network. Every quotient finite-to-one image of a locally compact metric space does not have a pointcountable cs -network^[9]. But C. Liu proof that it has point-countable \mathfrak{S}_{0} -weak base^[2]. Then X has pointcountable \mathfrak{S}_{0} -metwork.

Acknowl edgement

The author would like to thank the professor C-Liu for his suggestions.

References

- Lin S Generalized metric spaces and mapping [M]. Beijing Chinese Science Press, 1995.
- [2] Liu C, Lin S. On countable-to-one maps [J]. Topology Appl, 2007, 154(2): 449-454.
- [3] Sirois-Dumais R. Quasi-and weakly quasi-first-countable spaces[J]. Topology Appl, 1980, 11(3): 223-230.
- [4] Lin S Sequence-covering maps of metric spaces [J]. Topology Appl, 2000, 109(3): 301–314.
- [5] Boone J R, Swiec F. Sequentially quotient mappings[J]. Czech Math J, 1976, 26 174–182.
- [6] Foged L. Characterizations of S -space [J]. Pacific J Math, 1984, 110 59-63.
- [7] Ge Y. On space with a ^e-locally finite universalcs network [J]. Questions Answers in General Topology, 2000, 18(1): 93-96.
- [8] Arhangel'skill A V. Mapping and spaces [J]. Russian Math Surveys, 1966(21): 115-162.
- [9] Lin S, Yoshio Tanaka. Point-countable k -networks, closed maps, and related results [J]. Topology Appl, 1994, 59. 79-86.

(责任编辑:尹 闯)