The Genus of the Zero-divisor Graph of $Z_n[i]$ 模 n高斯整环 $Z_n[i]$ 的零因子图的类数

TANG Gao-hua, LI Xiang-ni, ZHAO Wei, SU Hua-dong 唐高华,李香妮,赵 伟,苏华东

(School of Mathematical Sciences, Guangxi Teachers Education University, Nanning, Guangxi, 530023, China)

(广西师范学院数学科学学院,广西南宁 530023)

Abstract The positive integers n such that the genus of the zero-divisor graph of $Z_n[i]$ is 0, 1, 2, 3, 4, or 5 are completely determined.

Key words genus of a graph, zero-divisor graph, the ring of Gaussian integers modulo n.

摘要: 完全决定了模 n 高斯整环 $Z_n[i]$ 的零因子图的类数分别为 0,1,2,3,4,5的情况.

关键词:图的类数 零因子图 模 n高斯整数环

中图法分类号: 0153.3 文献标识码: A 文章编号: 1005-9164(2010)01-0008-03

Throughout this paper it is assumed that all rings are commutative with identity. Let R be a commutative ring with identity, Z[R] denotes its set of zero-divisors. For a ring R, we associate a simple graph $\Gamma(R)$ to R with vertices $Z(R)^* = Z(R) - \{0\}$, and for distinct $x, y \in Z(R)^*$, the vertices x and y are adjacent if and only if xy = 0. An element a in R is called a unit if there exists an element b of R such that ab = 1. We say that two elements a and b are associates if there exists a unit a such that a = a such that a =

A simple graph G is an ordered pair of disjoint sets (V,E) such that V=V(G) is the vertex set of G and E=E(G) is the edge set of G. Given $v\in V$, the degree of v, denoted by deg (v), is the number of edges of G incident with v. Let $V'\subseteq V(G)$, then G-V' is the subgraph of G obtained by deleting the vertices in V' and all edges incident with them. If $V'=\{v\in V\mid \deg(v)=1\}$, then the subgraph G-V', denoted by G, is called the reduction of G. A bipartite graph G

is a graph such that its vertex set V(G) can be partitioned into two subsets V_1 and V_2 and that each edge $\in E(G)$ joins a vertex of V_1 to a vertex of V_2 . In particular, if E(G) consists of all edges joining V_1 with V_2 , then it is called a complete bipartite graph and is denoted by $K_{m,n}$, where $|V_1| = m$ and $|V_2| = n$. A graph G in which each pair of distinct vertices is joined by an edge is called a complete graph, denoted by K_n , where n = |V(G)|.

A surface is said to be of genus g if it is topologically homemorphic to a sphere with g handles. A graph G can be drawn without crossing on a compact surface of genus g, but not on one of genus g-1, is called a graph of genus g. We write V(G) for the genus of the graph G. Recently, this subject has been studied extensively in reference [P = G]. In this paper, we completely determine the positive integers n such that the genus of the zero-divisor graph of $Z^n[i]$ is 0, 1, 2, 3, 4, or 5, where $Z^n[i] = \{a+bi \mid a,b \in Z^n\}$ is the ring of Gaussian integers modulo n.

1 Some lemmas

Lemmas 1. $\mathbf{1}^{[7]}$ $V(K_n) = \{\frac{1}{12}(n-3)(n-4)\}$

for $n \ge 3$, where the notation $\{x\}$ represents the minimum integer that is greater than or equal to x.

Lemmas 1. $2^{[7]}$ $V(K_{m,n}) = \{\frac{1}{4}(m-2)(n-2)\}$

2)} for $m,n \ge 2$, where the notation $\{x\}$ represents the minimum interger that is greater than or equal to

收稿日期: 2009-12-09

作者简介: 唐高华 (1965–),男,教授 ,主要从事同调代数 ,交换代数和环论的研究。

^{*} This research was supported by the National Natural Science Foundation of China (10771095), the Guangxi Science Foundation (0832107, 0991102), the Scientific Research Foundation of Guangxi Educational Committee (200707LX233).

x .

Lemmas 1. 3^[6] $V(H) \le V(G)$ for any subgraph H of G, and V(G) = V(G), where G is the reduction of G.

Lemmas 1. $4^{[8]}$ If G is a connected graph of genus V such that every face is a triangle, then q=3(p-2+2V), where p=|V(G)| and q=|E(G)|.

Lemmas 1. 5 Let $R = Z_{p^k}[i]$ and p a prime Then the associate classes $A_{p^T}(1 \le T < k)$ of R state the following (1) If p = 2, then $A_{p^T} = 2^{2^{(k-T)-1}}$; (2) If $p \equiv 3 \pmod{4}$, then $A_{p^T} = p^{2^{(k-T-1)}}(p^2 - 1)$; (3) If $p \equiv 1 \pmod{4}$, then $A_{p^T} = p^{2^{(k-T-1)}}(p - 1)^2$.

proof Note that, $R = Z_{p^k}[i] = \{a + bi | a, b \in Z_{p^k}\}$. Let $S_p^T = \{sp^T | s \in Z_{p^k}, gcd(s, p) = 1 \text{ and } k \in S < p^{k-T}\}$ where $T \in \{1, 2, \dots, k-1\}$. Then one can divide the elements of Z_{p^k} into k-1 sets. The use of the Euler's phi-function gives the size of the set S_p^T 's and one will get $|S_p^T| = p^{k-T} - p^{k-(T-1)}$.

For any $a + bi \in U(R)$, let $p^{\top} = (a + bi) p^{\top}$, then we have

$$\begin{cases} p^{\mathsf{T}}(a-1) \equiv 0 \pmod{p^k}, & (1) \\ p^{\mathsf{T}}b \equiv 0 \pmod{p^k}. & (2) \end{cases}$$
 (1.1)

From congruence equation (1.1), we get $a-1 \in \{0\}$ $\bigcup S_p^{k-1} \bigcup S_p^{k-2} \bigcup \cdots \bigcup S_p^{k-T}, b \in \{0\} \bigcup S_p^{k-1} \bigcup S_p^{k-2} \bigcup \cdots \bigcup S_p^{k-2} \bigcup S_$

(1) If p = 2, $R = Z^{k}$ [i], from Theorem 3. 1(1) in reference [9], we have $|U(Z^{2^{k}}[i])| = 2^{2^{k-1}}$. Therefore $|A_{p}^{T}| = 2^{2^{k-1}}/2^{2^{T}} = 2^{2(k-T)-1}$.

(2) If $p \equiv 3 \pmod{4}$, $R = Z_{p^k}[i]$, then from Theorem 3. 1 (2) in reference [9], we have $|U(Z_{p^k}[i])| = p^{2k} - p^{2k-2}$. Therefore $|A_{p^T}| = (p^{2k} - p^{2k-2})/p^{2^T} = p^{2(k-T-1)}(p^2 - 1)$.

(3) If $p \equiv 1 \pmod{4}$, $R = Z_{p^k}[i]$, then from Theorem 3. 1 (3) in reference [9], we have $|U(Z_{p^k}[i])| = p^{2k} - 2p^{2k-1} + p^{2k-2}$. Therefore $|A_p^T| = (p^{2k} - 2p^{2k-1} + p^{2k-2})/p^{2T} = p^{2(k-T-1)}(p-1)^2$.

2 The genus of $\Gamma(\mathbf{Z}_{p^k}[i])$

Theorem 2. 1 Let $R = Z^{*}[i]$. Then $V(\Gamma(R))$ ≤ 5 if and only if $R = Z_{2}[i], Z_{4}[i]$, or $Z_{8}[i]$. Further more, $V(Z_{2}[i]) = V(Z_{4}[i]) = 0$, and $V(Z_{8}[i]) = 3$.

Proof If k = 1, 2, by [10. Theorem 4. 5], we have $V(Z_2[i]) = V(Z_4[i]) = 0$;

If k = 3, then $n = 8 = (-i)^3 (1 + i)^6$, we can 广西科学 2010年 2月 第 17卷第 1期

divide the nonzero zero-divisors of $Z_8[i]$ into the following 5 sets $A_{(1+i)}$, $A_{(1+i)^2}$, $A_{(1+i)^3}$, $A_{(1+i)^4}$, $A_{(1+i)^5}$.

For any $(a + bi) \in Z_8[i]$, let $(1 + i)^T = (a + bi)(1 + i)^T$, $T \in \{1, 2, \dots, 5\}$, then we have

(1) If T is odd, then $\begin{cases}
\frac{T-1}{2}(a-b-1) \equiv 0 \pmod{8}, \\
\end{cases}$

 $\begin{cases} 2^{\frac{T-1}{2}}(a+b-1) \equiv 0 \pmod{8}. \end{cases}$ (2.1)

(2) If Tis even, then

$$\begin{cases}
2^{\frac{T}{2}}(a-1) \equiv 0 \pmod{8}, \\
2^{\frac{T}{2}}b \equiv 0 \pmod{8}.
\end{cases}$$
(2. 2)

By solving congruence equation (2.1) and (2.2), we get the orders of the associate classes of $Z_8[i] \mid A_{(\frac{\mathbb{H}}{i})^4} \mid = 2^4, \mid A_{(\frac{\mathbb{H}}{i})^2} \mid = 2^3, \mid A_{(\frac{\mathbb{H}}{i})^3} \mid = 2^2, \mid A_{(\frac{\mathbb{H}}{i})^4} \mid = 2$, and $\mid A_{(\frac{\mathbb{H}}{i})^5} \mid = 1$. Since $\forall x \in A_{(\frac{\mathbb{H}}{i})}$, $\deg(x) = 1$, and every other vertex in $\Gamma(Z_8[i])$ has

degree \geqslant 2, by Lemma 1. 3, we have $\Gamma(Z_8[i])=$

 $\Gamma(Z_8[i])$ - $A_{(*i)}$, and $V(\Gamma(Z_8[i])) =$

 $V(\Gamma(Z^{8}[i]))$. Since $\Gamma(Z^{8}[i])$ is a connected graph,

and every face is a triangle, $|V(\Gamma(Z_8[i]))| = 15$,

 $|E(\Gamma(Z_{8}[i]))| = 45$, by Lemma 1. 4, we have

 $V(\Gamma(Z_8[i])) = 3$. Therefore $V(\Gamma(Z_8[i])) = 3$.

If k = 4, then $n = 16 = (-i)^4 (1+i)^8$. Similarly, we have $|A_{(\stackrel{1}{\mathbb{R}} i)^3}| = 2^4$, $|A_{(\stackrel{1}{\mathbb{R}} i)^5}| = 2^2$, then $K_{4, 16} \subseteq \Gamma(Z_{2^4}[i])$. Therefore $V(\Gamma(Z_{2^4}[i])) \geqslant V(K_{4, 16}) = 7 > 5$ by Lemma 1. 2.

If $k \geqslant 5$, by Lemma 1. 4, we have $|A^{\frac{1}{2}-2}| = 2^3$, $|A^{\frac{1}{2}-3}| = 2^5$, then $K_{8,32} \subseteq \Gamma(Z^{\frac{1}{2}}[i])$. Therefore $V(\Gamma(Z^{\frac{1}{2}}[i])) \geqslant V(K_{8,32}) = 45 > 5$ by Lemma 1. 2.

Theorem 2. 2 Let $R = Z_{p^k}[i]$, where $p \equiv 3 \pmod{4}$ is a prime. Then $V(\Gamma(R)) \leq 5$ if and only if k = 1 or k = 2 and p = 3; Further more, for k = 1, $\Gamma(Z_p[i])$ is an empty graph, and $V(\Gamma(Z_p[i])) = 2$.

proof If k = 1, then $Z_p[i]$ is a finite field and in this case, $\Gamma(Z_p[i])$ is an empty graph.

If k = 2, $\Gamma(Z_{p^2}[i])$ is complete graph by [11. Theorem 15] and $\Gamma(Z_{p^2}[i]) = K_{p^2-1}$, then for p = 3, $V(\Gamma(Z_{3^2}[i])) = V(K_8) = 2$, and for p > 3, $V(\Gamma(Z_{p^2}[i])) > 5$ by Lemma 1. 1.

If $k \geqslant 3$, then there are at least $q^2(q^2-1)$ elements in A_q^{k-2} and at least q^2-1 elements in A_q^{k-1} , so that $K_{8,72} \subseteq \Gamma(Z_q^k[i])$, therefore $V(\Gamma(Z_q^k[i])) \geqslant V(K_{8,72}) = 105 > 5$ by Lemma 1. 2.

Theorem 2. 3 Let $R = Z_p^k[i]$, $p \equiv 1 \pmod{4}$ a prime. Then $V(\Gamma(R)) \leq 5$ if and only if $R = Z_5[i]$; Further more, $V(\Gamma(Z_5[i])) = 1$.

Proof If k = 1, $Z_P[i]$ is a complete bipartite graph by [11. Theorem 17] and $\Gamma(Z_P[i]) = K_{P^{-1},P^{-1}}$, then for p = 5, $V(\Gamma(Z_S[i])) = V(K_{4,4}) = 1$, and for p > 5, $V(\Gamma(Z_P[i])) > 5$ by Lemma 1. 2.

If k=2, then there are $(p-1)^2$ elements in A_P , so that $K_{16} \subseteq \Gamma(Z_{p^2}[i])$. Therefore $V(\Gamma(Z_{p^2}[i])) \geqslant V(K_{16}) = 13 > 5$ by Lemma 1. 1.

If $k \geqslant 3$, then there are $p^2(p-1)^2$ elements in $A_{p^{k-2}}$ and there are $(p-1)^2$ elements in $A_{p^{k-1}}$, so that $K_{16,400} \subseteq \Gamma(Z_{p^k}[i])$. Therefore $V(Z_{q^k[i]}) \geqslant V(K_{16,400})$ = 1393> 5 by Lemma 1.2.

3 The genus of $\Gamma(\mathbf{Z}_n [i])$

Theorem 3.1 Let $R = Z_{i}[i], n = 2^{n}p_{1}^{k_{1}}...p_{s}^{k_{s}}q_{1}^{l_{1}}...q_{i}^{l_{i}}$, where $p_{i} \equiv 1 \pmod{4}$ and $q_{i} \equiv 3 \pmod{4}$ are prime numbers, $k \geqslant 1, l_{j} \geqslant 1, i = 1, ..., s; j = 1, ..., t; m \geqslant 0$. Then $V(Z_{i}[i]) \leqslant 5$ if and only if $R = Z_{2}[i], Z_{4}[i], Z_{5}[i], Z_{6}[i], Z_{8}[i], Z_{9}[i]$ or $R = Z_{p}[i]$ and $p \equiv 3 \pmod{4}$ is a prime; Further more, $V(Z_{2}[i]) = V(Z_{4}[i]) = 0, V(Z_{5}[i]) = 1, V(Z_{6}[i]) = V(Z_{9}[i]) = 2$ and $V(Z_{8}[i]) = 3$.

Proof By [9. Theorem 3. 2], we have $Z_{l}[i] \cong Z_{2^{m}}[i] \oplus Z_{l_{1}^{l_{1}}}[i] \oplus \cdots \oplus Z_{l_{s}^{k_{s}}}[i] \oplus Z_{l_{1}^{l_{1}}}[i] \oplus \cdots \oplus Z_{l_{s}^{l_{t}}}[i]$.

Case 1. Assumes 2. In this case, let $u = (0, a, 0, \dots, 0)$, $v_j = (0, 0, b, \dots, 0) \in \Gamma(R)$, $a \in Z_{p_1^{k_1}}[i]$, $b \in Z_{p_2^{k_2}}[i]$, and $|Z_{p_2^{k_2}}[i]| > |Z_{p_1^{k_1}}[i]| \ge 25$. Since $u_i v_j = 0$ for every $i, j, K_{24, 24} \subseteq \Gamma(R)$, then $V(\Gamma(R)) \ge V(K_{24, 24}) = 121 > 5$ by Lemma 1. 2.

Case 2. Assume s = 1.

(a) If $t \geqslant 1$, let $u = (0, a, 0, \dots, 0)$, $v_j = (0, 0, b, \dots, 0) \in \Gamma(R)$, $a \in Z_{p_1^{k_1}}[i]$, $b \in Z_{q_1^{l_1}}[i]$ and $|Z_{p_1^{k_1}}[i]|$ $\geqslant 25$, $|Z_{q_1^{l_1}}[i]| \geqslant 9$. Since $u_i v_j = 0$ for every $i, j, K_{8, 24}$ $\subseteq \Gamma(R)$, then $V(\Gamma(R)) \geqslant V(K_{8, 24}) = 33 > 5$ by Lem ma 1. 2.

(b) If $t = 0, m \geqslant 1$, let $u_i = (a, 0), v_j = (0, b), a \in \mathbb{Z}_{2^m}[i], b \in \mathbb{Z}_{p_1^{k_1}}[i] \text{ and } |\mathbb{Z}_{2^m}[i]| \geqslant 4, |\mathbb{Z}_{p_1^{k_1}}| \geqslant 25$. Since $u_i v_j = 0$ for every $i, j, K_{3,24} \subseteq \Gamma(R)$, then $V(\Gamma(R)) \geqslant V(K_{3,24}) = 6 > 5$ by Lemma 1. 2

(c) If t = 0, m = 0, then $n = p_1^{k_1}$, $V(Z_5[i]) = 1$ by Theorem 2. 3.

Case 3. Assume s = 0.

(a) If $i \geqslant 2$, let $u_i = (0, a, 0, \dots, 0)$, $v_j = (0, 0, b, \dots, 0) \in \Gamma(R)$, $a \in Z_{q_1^{l_1}}[i]$, $b \in Z_{q_2^{l_2}}[i]$ and $|Z_{q_2^{l_2}}[i]|$ > $|Z_{q_1^{l_1}}[i]| \geqslant 3$. Since $u_i v_j = 0$ for every $i, j, K_{8,8} \subseteq \Gamma(R)$, then $V(\Gamma(R)) \geqslant V(K_{8,8}) = 9 > 5$ by Lemma 1. 2.

(b) If $t = 1, m \ge 2$, let $u_i = (a, 0), v_j = (0, b), a$

 $\in Z_{2^{n}}[i], b \in Z_{q_{1}^{l_{1}}}[i] \text{ and } |Z_{2^{n}}[i]| \geqslant 16, |Z_{q_{1}^{l_{1}}}[i]| \geqslant$ 9. Since $u_{i}v_{j} = 0$ for every $i, j, K_{8,15} \subseteq \Gamma(R)$, then $V(\Gamma(R)) \geqslant V(K_{8,15}) = 20 > 5$ by Lemma 1. 2.

(c) If $t = 1, m = 1, l \ge 2$, let $u = (a, 0), v_j = (0,b), a \in \mathbb{Z}_2^m$ [i], $b \in \mathbb{Z}_{q_1^{l_1}}$ [i], \mathbb{Z}_2^m [i] = 4, $\mathbb{Z}_{q_1^{l_1}}$ [i] ≥ 81 . Since $u_i v_j = 0$ for every $i, j, K_{3,80} \subseteq \Gamma(R)$, then $V(\Gamma(R)) \ge V(K_{3,80}) = 20 > 5$ by Lemma 1. 2.

(d) If $t = 1, m = 1, l_1 = 1$, then $n = 2q_1$. If $q_1 > 3$, let $u_i = (a, 0), v_j = (0,b)$, $a \in Z_2^m[i], b \in Z_{q_1}[i]$, and $|Z_2^m[i]| = 4$, and $|Z_{q_1}[i]| \geqslant 49$. Since $u_i v_j = 0$ for every $i, j, K_{3,48} \subseteq \Gamma(R)$, then $V(\Gamma(R)) \geqslant V(K_{3,48}) = 12 > 5$ by Lemma 1. 2. If $q_1 = 3, Z_6[i] = Z_2[i] \oplus Z_3[i]$, then $V(\Gamma(Z_6[i])) = V(K_{3,8}) = 2$ by Lemma 1. 2

(e) If t = 1, m = 0, then $n = q_1^{l_1}$. $V(Z_9(i)) = 2$ by theorem 2. 2

(f) If t = 0, $m \neq 0$, then $n = 2^n$. $V(Z_8(i)) = 3$ by theorem 2.1.

References

- [1] Akbari S, Maimani H R, Yassemi S. Where a zero-divisivor graph is planar or a complete r-partite graph [J]. J Algebra, 2003, 270, 169–180.
- [2] Smith N O. Planar zero-divisor graph [J]. International J Commutative Rings, 2003, 2(4): 177-188.
- [3] Wang H J. Zero-divisor graphs of genus one [J]. J Algebra, 2006, 304(2): 666-678.
- [4] Wickham C. Classification of rings with genus one zerodivisor graphs [J]. Communications in Algebra, 2008, 36 325–345.
- [5] Wickham C. Rings whose zero-divisor graphs have positive genus[J]. J Algebra, 2009, 3212–377-383.
- [6] Chiang-Hsieh H J Wang H J Commutative rings with toroidal zero-divisor graphs [J]. Houston Journal of mathematics (to appear).
- [7] Harary F. Graph theory [M]. Addison-Wesley Publishing Co, Reading Massachusetts, 1972.
- [8] Huang Yao-Hsuan. Zero-divisor graphs of higher genus
 [D]. Master's Thesis of Department of Mathematics
 National Chung Cheng University, 2007.
- [9] Su H D, Tang G H. The prime spectrum and zero-divisors of Z_n[i] [J]. Guangxi Teachers Education University, 2006, 23(4): 1-6.
- [10] Tang G H, Su H D. The properties of zero-divisor graph of $Z_n[i]$ [J]. Guang xi Normal University, 2007(3): 32–35.
- [11] Osba E A, Al-Addasi S, Jaradeh N A. Zero-divisor graph for the ring of Gaussian integers modulo n [J]. Communications in Algebra, 2008, 36 3865–3877.

(责任编辑: 尹 闯)