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Existence of Periodic Solutions for a Kind of High Order
L# nard Equations with Deviating Argument
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Abstract By using coincidence degree theory, the suffident conditions are obtained for existence of

at least one periodic solution for a kind of high order Lienard equations with deviating argument.
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The existence of periodic solutions for L€ nard
equations with deviating argument has been studied
extensivelylkﬂ. The purpose of the article is to
investigate the Ifnard equations with deviating
arguments of the form

e flx (0. = b))+ gl
x(t).x(t= b)), x(e= L@))= p. (1
where f€ C(R,R),g€ C(R" *,R) are continuous
functions and f(t+ T,x,y)= f(t,x,y),Y (x,y)E
Rz,g(t+ T,x0,X1, ,xm) =  g(t,X0,X1,** ,Xm),
Y (xo,x1, ,x)€ R"',PE C(R,R),HE C(R,
RY(i= 0,1,2: ,m) withp(t+ T)= p(t), f(t+
T)= f(t)and TE (0,2 ].

In reference [5], Lu discussed the existence of
periodic solutions for a kind of second order differential
equations with deviating arguments

() 4 flex(n).x(t -
Ung(x(t= L)) = p(1).

In reference [6], Wang studied a kind of high
order L§ nard equations of the type

O+ ) () glx - fx () =
p(1).

b(e)))x'(0) +
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In reference [7], Pan studied the existence of

periodic solutions of the following differential equations

n— 1

x(n)(t):Z b'x(i)(t)‘F f(t,x(t),x(t- fl(t)),
~x(t- L)+ plr).

In this paper, by using Mawhin § continuation
theorem, we establish a theorem on the existence of
Our method is

different from reference [7], and the results of this
I~ 4]

periodic solutions of equation ( 1).

paper are new and complement previously ones'
In addition, we give an example to demonstrate our
new results.
1 Preliminaries

For ease of exposition, throughout this paper we
adopt the following notations Let ¥ = x&€ C(R,
R)lx(t+ T) = x(t)} with the norm | x|~ =
maxe o.71{l x ()] } and X = {x€ C""(R,R)| x(t+
T) = x(¢)}) with norm Il xIl = max{| x[- ] x|,
-1 x" "]} be two Banach spaces, L: D(L)C X—>
Y be a Fredholm operator of index zero. P X— X, Q
¥ Y be projectors such that

ImP= ker L,ker Q= ImL,X= ker LD ker P,
Y= ImL©D mO.

It follows that L| pen wer: D(L)() ker P> ImL
is invertible, we denote the inverse of the map by K.
Let) be an open bounded subset of X, D(L)( K&
N, the mapN: X— Y will be called L <ompact in{Z,
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if ON (K) is bounded and K, (1 - Q)N: K> X is
compact: We also define the operators L and N as

follows
L D(LYC X~ Y,Lx= x",D(L)= {xl x€
C(R,R),x(t+ T)= x(t)}, (2)

N: X—> Y . Nx= - f(t.x(t),x(t - %))
X () = g(tx(n).x(t= b)) x (= b))+
p(1). (3)
It is easy to see equation(1) can be converted to the
abstract equation Lx = Nx. Moreover, from the

definition of L, we can see ker L = R,dim(kerL) =

I, ImL = {y\ ye Y,J:y(s)ds= 0} is subset, and dim
(Y/ImL) = 1, we have codim(ImL) = dim(ker L),
so L is a Fredholm operator with index zero. Let P X
— ker L,Px = x(0),0Y—> Y/ImL,Qy =

T
_TI"J Oy(t) df and let L| pp e D(L) ker P> ImL.

Then Ll p(zf) kerr has a unique continuous inverse Kp.
One can easily find that N is L —compactinK, whereK

is an open bounded subset of X.
Lemma 1" Supposex€ C'(R,R) andx (t+ T)
= x(1)(0< < %), then,
r 1

/ 1 T 1
AENOIRCIEES JOIX”(t)\zdt)2< el

T
J a2y, (4)
Lemma 2°' Let & [0, + ©o ) be constants, s€
C(R,R) withs(t+ T)= s(t), ands(t)€ [- LT,
Vt€ [0,T]. ThenV x€ C'(R,R) withx(t+ T)=
x(t), wehave
T

Jx () = x(e= s(0)?d=< 2’1{ Z\x’(z)\zdz.
(5)

Lemma 3" Let L be a Fredholm operator of
index zero and let N be L —compact on K. Assume that
the following conditions are satisfied

(i) Lx7# ANx,YV x€ KN D) AE (0,1);

(ii) ONx7# 0,V x€ KN kerL;

(iii) deg { ON 0N kerL,0})# 0.

Then the equation Lx = Nx has at least one solution in

KN D(L).
2  Main results

Theorem Assume the following conditions hold:
(H) suprsoe &l f(t,x.0) = A
( ) Thereis a constantc > 0, such that
g (t,xo,x1, xm)+ f(t,x0,Xm 1)x’\ >
P, (6)
Ve RIxl > ci= 0,1, ,m,m+ 1.
360

(H) The functiong has the decom position

g(t,x0,x1 0 xm) = K(t,x0)+ D hi(£xi),
= 1

(7
such that
K (t,x)|<< Ut Ul xf, (8)
L hi(t,x) = hi(t )<< Tlx =y Li= 1, m,
(9
and
i BRI Vi e, (10)

where U, UG, T V> 0.

Then equation( 1) has at least one T —periodic
solution provided one of the following conditions

hold (0 < << Zx):
(A) 220 | G(t) T+ Gre D Ve 4 <B,
=1 =1
n= 2.,k€ 7 ,

where B = min{ 1 .. }.

T
(A) 222 | f(@)l=-T+ UTs T Vs 4 <1
i=1 =1

n= 2%- 1L,kE Z .

Proof Consider the equationLx= ANx A& (0,
1), where L and N are defined by formula(2) and
formula(3). LetKi= {x€ D(L) /ker L,Lx = ANx
for someA€ (0,1) ) forx€ Ki. We have

X A (x (1) (= b)x (0 + gl
x(1),x(t= b)), x(t = b)) 1= Ap(1).

(11)

Integrating them on [0, 7], we have
T

(@) x (e - bn)x' () + gltx(),

x(t= fi(t)), - x(t - fn(t)))]dt:J:p(t)dt.

(12
We can prove that there is 1t € [0,7] such that
| x(t)l < c.Indeed, from formula( 12), there isto€
[0, T'] such that
f(to,x(t0),x(to — Jfo(lo))))cl(lo) + g(to,x(fo),
x(to - Li(t)), . x(to— h(t))) = —;J :p(t)dt.
If | x(2)l << ¢, then taking 1 =
lx ()< e
If| x (0)| > ¢, it follows from assumptions ( H)
that there is some i€ {1, 1} such that
| x(to = §(0)) << ¢ Sincex (2) is continuous fort€
R andx(t+ T)= x(t), sothere must be an integerk
and a point i€ [0, T ] such thatto— f(2)= kT+ 0.
Sol x (1)l = I x(t0 - f(0))l < ¢, which implies
Guangxi Sciences, Vol. 16 No. 4, November 2009
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J:\ x ()l de. (13)

Suppose n = Then,
multiplying both sides of formula(11) by x(¢) , and
integrating them on [0, 7], we have forA& (0, 1).

T T

(- 1) 0|x(k’(t)|2dt = - N gt.x(1),x(t -
fi(e)), -, x(t—= % (2)))x (¢ dt—{Tf (t,x(t),x(t -
b)) x (6)x(¢)de + AJ x(t)p Jf(z

L x ()] e+

2% for a positive integer.

fde =
x(0),x(t -  bo)x'Ox)d - kJOK(z,
x(0)x(t)dt - AJSH hi(t,x (t = §(2)))x(2)de +
XJZx(t)p(t)dt.

Thus, we have

T T
STl < Aj(Jx’(l)Hx(t)\dt +

JZ|K(t,x(t))\ [ x(0) de + JZ‘p(l)‘ [ x ()l dt +

ZJOT\hf(t,x(t— F))) - hi(t,x ()l I x ()l de+

ZJOhi(t,x(t))Hx(tﬂdt. (14)
Choosing a constant X > 0 such
20 E@)-T+ G+ 720 V+ X < 1 For

the above constant X> 0, from formula( 10) we see

that AT +

that thereis a constant W> 0 such that
Lhi(e,x)l < (V+ Xl xlfod x| > Wee [0,

T]. (15)
Denote

A= (t€ [0, T]:Ix(0)<< WA= (1€ o0,
Tl x ()] > W, (16)

and then it follows from formula(13), (15), ( 16) and

Schwarzinequality and Lemma 1 that
T

O\h,-(t,x(z) Wlixo) & = JA | hi (2,

x() x@)l &+ JA\hi(t,x(t))Hx(t)\dt <

hi} T\x nlde + (V + lexlmJ OT|x(t)\2dt <
Wl x ()l T+ N+ Xlx@)l2T (17)

where v = maxe (0.7), 1< W hz(t,x)| .
from formula ( 9),

Lemma 1 and Lemma 2, we obtain

JZ\ hi(t,x(t - £(0)))= hi(t,x())| ] x(0)] de<

|x(t)\xzrlj(r|x(t) - x(t -
1yl x ()= W f()l- J|x () 2dt)71. (18)

Furthermore,

by wusing Schwarz inequality,

Fay)lde <

IEAE 2000F 118 % 16%5% 44

From formula(8), (13), we get
Z\ K(t,x()l | x()l dt < “[U +

Ulx () Tx(0) &< Ulx ()l T+ Ulx@)l2T
(19)
J:|p(t)\|x(t)\dl< Tl p ()l x (). (20)

Substituting formula( 17)~ (20) into formula( 14),

we have

T l m
J0|x“‘)(t)\2dt< AT+ 2D, | f()l-T+
=1

Ur+ 12 (V+ >§§2|x(k’(t)|2dt+ [AT?2c +
(2 [ {@l-T+ UP + Blpwl- +

m

3 m
hwv o+ 220712+ 2T, N+
=1

Td p(t)l- +

i=

1

X](JOT\ )P +
TZn hwv+ G TE + czinj (V+ X 1. (21)

From (A1), we obtain that there is a constantM1> 0

[UTc +

T
such thatjo‘ x(“(t)‘ 2= M.

Supposen = 2k — 1 for a positive integer. Then,
multiplying both sides of formula( 11) by x'(t), and
integrating them on [0, T], we have forh& (0, 1).

(= e as - e 0.5 (-
() (o= G0 (i - kfofu,x(z),
Wi o) &0 K pina-

A fex @ x- b oya- ke
x(6))x' (1) dt — 42 Wtx(t - §(0))x () d+
4 s oo,

Thus, we have

:I x ()] de < AJ Z\ x (0l %de + JZ\ K (t,
x() I x" () de+ JJ[)(Z)‘ L x' (1) de+ ZJZI hi(t,

x(t- 5()) = h(t.x@) I x" (0)] de+ E”ZI hi(t,

x() I x" () d. (22)

Choosing a constant X > 0 such that

20 [ Hl-Te Ure O30, (Ve N+ 4 <1

And then it follows from formula( 13), (15), (16) and
Schwarz inequality and Lemma 1 that
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JAllhi(z,

x| x" (ol de + JA\hz(t,x(t))Hx/(t)\dt <
X(c +
JZ|x,(Z)‘ dt)(JZ|x’(t)\dt) < [w+ N o+

X)C]JOTI A 17a2 T (Vs X)Q[Z\ o,
(23)

Furthermore,

J Z‘ hi(t.x (o) x" (o)l de =

T
hﬂjo\x,(tﬂdt + N~ 4

where hwv =  maxe (0.7 5=W ki (t,x)| .

from formula(9), by using Schwarz inequality and

Lemma 1 and Lemma 2, we obtain

Z|hi(t,x(t— F()))=hi(t,x(t))]-
Lx' ()] délj(jl x(t)- x(t-= fF(e))l-

T
X (1) < 2T lf(t)|c<::J Sl e,
From formula(8), (13), by Lemma 2, we get
T , 1
JK@Ex@)lx(ld < U+

(24)

T T
ucﬁ)JO|x<k>(t)\2¢)%+ Q7J‘0\x<“(z)l e, (25)
By Schwarz inequality and Lemma 1, we have

Tl ol < 1pl] 12wl ar<

1|7 1
| p(t)l- T_2J0| x (0] 2de)2. (26)
Substituting formula(23)~ (26) into formula(22),

we have

m

JZ\ O 2d U+ Uer D) (vt Vet

X)) + o)l 12 JOTI WAy o+
[?Emlr\ f)l- + Ur + Em (VM + X7 +
AJ OTI X0 (0)] 2 de. (27)

From ( A2) , we obtain that there is a constant M2 > 0

T
such thatJ O| x" (1)l A Me. Let Ms = max{ M1,

T
Mo}, Thus,JO‘x(k)(t)|2dl‘< Ms. By Lemma 1, we
have
T
Jx' e M (28)

On the other hand, multiplying both sides of formula
(11) byx

0\ "(nlrde <

(t) ,wehave
J | f(t,x(
N x" () x™ (1)) de+ J0|K(t

),x(t -

x(Dx" @)l &+ “Ip(t)llx(")(t)\dt +
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m

ZJZI hi(t,x(t— £(6))) = h(tx (@) | x™

: | dr+

ZIJ ZI hi (o () |5 (1)) de (29)
Since

Jhi(ex ()X (nlde<< v+ (V4

T Lo T
>§c](J Sl a2 e (Ve >§7} S (o] e,
(30)
by using Schwarzinequality and Lemma 1 and Lemma
2, it follows from formula(9) that

\h, (t,x(t - §(1)) = hi(t,x ()l -
L x"( \dgyt L x(t) = x(t— F(o)l X" ()] de<
27 f(t)|:«:J0\x ()17 de.

(31)

From formula(8), (13) and Lemma 1, we get

Z\K(t,x(t))\|x(")(t)|dt< Z[U+
Ulx ()] 1x" () dL (Ui
Ue) 77 ( OTI X (dyz+ U ZI X () 2de (32)
By Schwarz inequality and Lemma 1, we have

:\ (O x" ()] de< |p(l)‘~j ZI x" ()] de<
| o) T%(JZI X ()] 2. (33)

Substituting formula( 30)~ (33) into formula( 29),

we have

J:\ ") 2 U+ User Zjl (hwv+ Vet
¥+ | p(nl- ]r%J. :\ X ()] 2dey? +
[?Z_nle F(r)
A J ;\ x" (1)l *de.

From ( A2), we obtain that thereis a constant M > 0

+ Ur + Z(V+ XNT +
=1

(34)

T
such thatJ 0‘ x" (1) *de< M. We claim that| x" (¢)]

T
< JO‘ x" (Ol de,i= 1,2, ,n - L 1In fact,

noting that x~ 7 (0) = x'"? (T) there must be a
constant ¥ € [0, T'] such that x" (Y) = 0, we
obtain )

X" () x" Y (Y) + J le(n)(s)ds\ <

T T
L (Y + JOI x" ()] dt:JO\ x" () &, (35)
Smilatly, sincex” ¥ (0)= x" ¥ (7T) , there must be
a constant € [0, T ] such thatx"™” (%)= 0, from
formula (35) we get | x" 7 (1) = | X" (¥) +
Guangxi Sciences, Vol. 16 No. 4, November 2009



-t " T
J Yx<"- Vs)dst < n‘ 0| x" (t)l dt. By induction, we
2

havel x? (1)< T”*"*ﬂlxm(z)
L. Furthermore, we
T“""J:\ X (0 #Z TTEME i= 1,2, - L,
From formula ( 13) and formula ( 28),
| x(0)]-< e+ T Z\x’(r)\ P ek TPMS. T
follows that there is a constant B> Osuch thatllxK
B. ThusQi is bounded.

LetQ2= {x& ker L,ONx = 0}.
Q>, then! x (1) = d& R and satisfies

ONx = _TIJ OT [- g(t,d,d,--,d)+ p(¢)]dt=
0. (36)
From formula(36) and assumption ( ), we haved

< ¢, which implies22 is bounded. Let{} be a non-
empty open bounded subset of X such that 2DQ U

Q>. Wecan easily see that L is a Fredholm operator of

| dt,i= 1,2, ,n-
<

have

we obtain

Suppose x €

index zero and N is L —compact on{I. Then by the
above argument we have (i) Lx7# ANx ¥V x€ 4N
D(L),AE (0, 1); (i) ONx# 0,V x€ &) ker L.

At last we will prove (iii) of Lemma 3 is
satisfied- We takTe H(x,_ X [0,1t> X, H(x,_)
gt x (1), x(t = fi(r)), = x (1
- L))+ p(t)]d. From assumption ( ), wecan
easily obtain H(x, )7 0,Y (x, )€ QN kerLX
[0, 1], which results in deg {QNX,‘QH ker L,0} =
deg{H(x,0), Q2 ker L,0} = deg{H(x,1) 2
kerL, O}7= O.

Hence, by using Lemma 3, we know that

— 1_—
= T 0[_

equation( 1) has at least one T —periodic solution.

3 Example

Consider the following equation x (t) + _é (1

+ sinx(z)+ sinx(f- cos t))x,(t)+ (?10 cost)x (1)

+ (218 sin ¢)x (f - ﬁocos t)= cost. Wheren= 5,4
1 1 L.

= _z,g(l,x) = (?OCOS l)x7hl(t’y) = (?SSIH t)y9

p(t) = cost, (1) = 1_(1)Ocost. Thus, fi(t) = %Ocos

IEAE 2000F 118 % 16%5% 44

?1&< X+

7= 3 U= gy Te 5 Nis el Bl = g
Obviously assumptions ( H) ~ ( Bs) hold and
1

Tl i ()] Vi =
2T () + Gre iTy 4= 22X 28x 100
1

2§< x4+

that this equation has at least one Z —periodic solution.

_; < 1. By Theorem, we know
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