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Abstract We investigate the zero—divisors and the unit group of quaternion algebra over Z: which is

denoted by Z. [i,j,k] and obtain the calculating formulas of the number of zero-divisors and the
order of the unit group of Z: [i,j,k]. We prove that Z: [i,j, k1= M2(Z) if and only if 7 is odd. In
addition, the structure of the unit group of Z: [i,j .k | are completely determined.
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Let R be an arbitrary ring. then it is well known
that the ring of quaterions over R is denoted by R [I,
j.k1= {a+ bi+ cj+ dkla,b,c,d€ R} ,wherei,j,
k are formal symbols called basic units and i = j2 =K

= ijk= - 1. Moreover, if R is a commutative ring,
then R[i,j,k]|isan R —algebra. Z:[i,j,k|= {a+ bi+
G+ di a,b,c,d€ Z) is the quaternion algebra over
Zi ,where Z: is the modulo” residue class ring.
Throughout the paper, H» denotes the ring Z [i,
jo.k1. Assume T= a+ bi+ ¢+ dk€ Zili,j.k],
then the scalarN(T) = d+ b+ ¢+ d will be called
the norm of L. And the elementTZ a- bi-cj - dk
will be called the conjugate element of T. It is easy to
know that TT= TT= N(T) . And we put Re(T) = a.
If R is a ring, then D(R) denotes the set of all zero—
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divisors of R . For any subset £ of R , | El denotes the
order of E,U(R) is the unit group of R, and the
Jacobson radical of R, denoted by J(R) ,is defined to
be the intersection of all the maximal left(right) ideals
of R. f'I& R ,then <T> denotes the two-=sided ideal
which is generated by T <T> 1 denotes the left
principle ideal generated by T, while the right principle
M. (R)

denotes the ring of all 27X 71 matrices over R. Given

ideal generated by T, is denoted by <T> & .

integers a and b, (a,b) denotes the greatest common
divisor of @ and b .

In this paper, we obtain the calculating formulas
of the number of zero—-divisors and the order of unit
group of Z [i,j,k]. And we prove that H,= M:(Z,)
if and onlyif 2% . And the structure of the unit group
of Hy are completely determined.

1 The zero-divisors and the order of unit
group of Z. [i.j, k|

Lemma 1.1 [1, P 443, Example 4] Assume
that p is an odd prime, m= 1, and the number of
integer solutions of the congruence equationxi+ x3+
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-+ xn= 0(mod p) is denoted by T(m,p) .

1( m0d4) N then T(m

T )Ifmis even, p= )=

P (p- Dpr
I YKmis even, p= 3(mod4)
P (- Dip- Hpr!
(1) If m is odd, then T (m,p) = p'~ .
Theorem 1. 1(I ) Ifn= 2,2 1, then| D( H,)l
= |UH) = 27"
A H)Ifn= p,t=

,then T(m ,p) =

1,p is an odd prime, then

ID(E) = (p'+ p- Dp L lUHY = pt(1-
1
1-
p)( p)

() Ifn= pipe- pr.m= 2, andpi,p2 -, pn
are distinct odd primes, f1,f2, ,tn = 1, then
LTS | TS [ )

U(H) = nﬂ (1= L)1 - pl)

(IV)Iitn= prlpzz---pm”’ B Lm= 1.,andp,
p2,-- ,pn are distinct odd primes, 11,2, ,tn=> 1,

m

then|D(Hn)| = n4[1_ —;ﬂ (1- =

(H)l = ZH (1= (1= 7).

Proof (I
Theorem 4 3].
(Il ) Assumen = p',= 1,pis an odd prime

) It is a direct conclusion of [2,

Then we have two cases to argument.

Case 1 Supposet= 1,andV= a+ bi+ cj+ dk
€ H, withO< a,b,c,d< p— 1. ThenV= a+ bi+
G+ dk&€ D(H, Y= pl N(Vy& {a,b,c.d} is a solution
of the congruence equation

i+ B+ ¢+ d°= 0(modp). (1)
Moreover, by Lemma . 1, the number of solutions of
equation (1) is7(4,p) = p3+ pz -p. So| D(Hn)‘
= p3+ p2 - p. And therefore | U(Hn)‘ = 4 -

|D(H)| = p'= p' = p+ p= p(1- )(1—p>

Case 2 SupposeZ= 2,and V= a+ bl+ cj+ dk
€ Hy with 0< ab,c,d< p'— 1.ThenV= a+ bi
+ ¢+ dk€ D(H)=pl NVYS{a,b,c,d)} is a
solution of the congruence equation (1).

Ifi= (a0,b,00,do) with 6< ao,bo,c0,de< p -

1 is an integer solution of equation (1), and a =

a(modp),b = bo(modp),c = o(modp),d =
do(modp), it is easy to see that {a,b,c,d} is also a
148

solution of the congruence equation ( 1). Therefore, for
any W, W W, We (0, 1,2, "3, (ao+ Wp)+  (bo
+ Wp)i+ (o+ Wp)j+ (do+ Wp) k€ D(H.).
Thus from every solution 1= {ao,h0, ®,do} with
0< ao,bo,c0,de< p — 1 of the equation (1), we can
get (p7 )" different zero-divisors of Hi .
we know that the equation (1) has p’ + p°

From case 1
- P
different solutions 1= {ao,bo,, do} with 05X ao,bo,
o,ds~ p- 1. Thus the equation (1) has (p3+ pz -
p) (p™ " different solutions {a,b,c, d} with 6= a,b,

c,d< p' - 1-Hence,inthiscase,‘D(Hn)\ = (p2+

P - 1)p4[_3, and thereforel U( H,,)\ = p" -

|D(Hn)| = 4t_3(p3— pz— p+ 1= p‘v(l_ ;})(1
1

_ ;2)

(II1) Supposen = pipz- pi,m= 2. From [2,
Lemma 3. 6], we have H: = Hy 1 %) szfz@ .. D

Hyw. Thus |U(H) = [U(H, ) X - X
| U(Hpw)l = pr*i(1 - —1)(1 _ —12)...p,jan(1_
Pl )2z

1 I R P

o) (1= 75) = Al L) (1= 75), and

'DHN = | HI - TucHE) = '[1-]] (1-
=1

1 1

—) (1= =3)].

pe)( pg)]

(IV ) Supposen = 2fplt'p2t2"'pmtm , f} 1,1’)’12 1.
By [2, Lemma 3. 6], we have H, = H >} Hy P,

Hpi2» D D Hy . Thus! UCH)| = | U] X
U)X o X [ U(Hm) = 27 (1 -
1 B S 1 LA

S (L= ) pi (1= (1= )= S| (1-
1 1

;)(1— p—ez), and| D(H)| = | Al - [U(H)| =

i 1 1
AL - ha- -

2 The structure of Z: [i, j, k |

In the next, we use H(F) to denote the
quaternion algebra over field F .

Lemma 2. 1 [3, Theorem 7. 4. 6] Assume that
char (F)7 2. Then the quaternion algebra H(F) is
either a division ring or being isomorphic to M2(F) ,
the ring of 2< 2 matrices over F' . The last possibility if
and only if the equationx2+ 3= - lcan be solved in
F ,and the map0: H(F)> M2(F) given by
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It is an isomorphism of rings.

Lemma 2. 2 If pis an odd prime and£> 1, then
the congruence equationx2+ yZE - 1(modp') has an
integer solution x0, yo such that (xo0,y0,p) = 1.

Proof First, by [1, P. 443, Example 4], the
congruence equation in x,) x°+ y = - 1(modp)
must has integer solutions. Assume that integers xo, yo
satisfyxg+ y%E— 1(modp), let xo-+ y(2)= mp - 1,
wheremi is an integer. Then it is easy to see that (xo,
yo.p) = L

Second, we claim that the congruence equation

(xo+ xp)’+ (yo+ yp)’=- 1(modp’) (2
must has integer solutions. In fact, by simple
computations, the equation (2) can be written as

2p (xax + yoy)=— mip(modp’). (3)
Since (2pxo, Zpyo,pz) = p and p| mip, the equation
(3) has integer solutions. Assume that integers X1, 1
satisfy (xo+ x1p)’+ (yo+ yip)’= - 1(modp’) , let
(xo+ xip)’+ (yo+ yip)’= map’ — 1, wherem:is
an integer. Then it is certainly that (xo+ x1p,yo+
yp.p)= 1.

Third, we claim that the congruence equation

(xo+ xip+ xp )+ (yo+ yip+ yp' )y =-
1(modp’) (4
has integer solutions. In fact, by simple computations,
the equation (4) can be written as

P (v + xip)x + (o + »p)y) =-
m2p*(modp’). (5)
Since (20°(x0+ x1p),2p" (yo+ yip).p )= p and
p2| mzp2 , the equation(5) has integer solution x2,y»
such that (xo+ x1p+ x2p°,y0+ yip+ np,p)= L

Therefore, by the similar argument, we can
conclude that for any odd primep and integer = 1,
the congruence equationxz+ y2E - 1(modp') must

has an integer solutionxo, yo such that (xo, yo,p)= L

Theorem 2. 1 Z [i,j.k = M:(2)= 2, forn
= 1
Proof “<”. Assume 2, we need to prove
that Hn = M2(Z).
Case | Assumethatn= pis an odd prime. Since
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Zpis afield, by Lemma 2. 1 and Lemma 2. 2, we have
Zoli j. k1= M2(Z).

Case 2 Assume thatn= p ,wherep is an odd
prime and 2= 2. By Lemma 2 2, there exist two non—
zero integersx , y such thatx”+ yzE— I(modp ) and
(x.y.p) =
assume that (p,y) =

1. Without loss of generality, we may
L. Let0: Zy [i,j k1> M2(Zy)
be a map defined as Lemma 2 1. It is easy to verify
that 0 is a ring homomorphism. We claim that 0 is
injective. To prove our claim, it suffices to show that
the kemel of0 is equal to 0. For an element T= a+ bi
+ ¢+ dk& 7/ [i,j,k] such that

y 0
SN N
(73

we have the following system of linear homogenous

1 by

equations ina,b,c ,andd.

a+ bx — dy= 0(modp'), (6)
c+ by+ dx= O(modp"), (7)
- ¢+ by+ dx= O(modp'), (8)
a - bx+ dy= 0(modp"). (9)

From (6)+ (9) and (7) - (8), we derive 22 =
0(modp'), 2= 0(modp) . Since 2'p , we havea= 0,
¢= 0. Substituting these values into formula(6) and

formula(7), we obtain

bx = dy(modp), (10)
by =~ dx(modp"). (11)
Snce x7# 0,y7 0,by (100X x+ (11)X y, we

y’) = O0(modp') , and then b =
0(modp') . On the other hand, substituting a= b= 0

derive b(x” +

into formula(6),we have dy= 0(modp') . Since (p,
y)= 1,wegetd= 0. Therefore0(1) = 7T= 0.
Thus 0 is injective. Moreover, since | Z, [i,j,k]| =

| M2(Z)| is finite, 0 is bijective. Therefore, 0 is a ring
isomorphism, which implies that 2 [i,j.k] =
M2 (2.

Case 3 Assume thatn= pi'"pi2- pa' , where
P, ,pm are distinct odd primes and m= 2.t
== 1. Then

Zilinj k1= Zoy [ ke JD - D Zyw i,k 1=
M:(Zin) D - D Mz ) = M2 D D
Zp )= Ma2(Zpjvpin)= M2Z).

“=7”_ Assume that Zu [i,j, k== M2(Z ) , we need
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to prove 2hn.

M>(Z:) is not a local ring. In fact, both of A=

0
and B = {0 j

j is a unit of M2(Z:) ,s0 M2(Z:) is not a

Ifn= 2 with£= 1, thenit is easy to Ve[ify that
are zero—divisors in M2(Z:) but A+

local ring. On the other hand, by [2, Theorem 3. 7],
Zi [i,j.k ]is a local ring, thus Z [i,j.k 17 M2(Z) ,
which implies that "= 2 .

If n= 2fp1t‘---pmtm ,where = L= 1,p1- , pm
are distinct odd primes and f1,+ ,tn= 1. By [2,
Lemma 3. 6], we have H:= HiD lefl@"- ¥, Hp tn
Z M (22D Mr(2,1) D D Ma(2,0)= M2 (22
D 20D D Z,w)= M2(2). Therefore H 7
M>(Z:) . This completes the proof.

3 The unit group of Z. [i, j.k |

From [2, Theorem 3. 8], we know that the ideal
M= <4+ i, 1+ j,1+ k>t
= <1+ i,1+ j, 1+ k> r is a maximal ideal in Z [i,
j.k1if2 n.

Lemma 3.1 Suppose 2n. LetM = <1+ i,1
+ j, 1+ k> in HrandN = {a(1+ i)+ a(1- i)+
bi(1+ j)+ b(l- )+ a(l+ b+ a(l-k)la.b,
e€ Zi,A= 1,2} . ThenM = N.

Proof It is certainly that N M . On the other
hand, assume that T= T(1+ i)+ B(1+ j)+ T(1
+ K€ M ,whereli= ai+ awi+ aj+ ak, b= b
+ hi+ bij+ bk,, 5= a+ i+ aj+ akE H .
Then

T= (a1 - a+ b= b+ a - )+ (a+ a+

<+ i, 1+ j, 1+ k> =

b — i+ o+ )i+ (w+ a+ b+ b+ - @)j
+ (s — a3+ b+ but+ a+ a)k= (@+ b+ o)(1
(+ b)(1+ j)+
(- ar— bs—0)(1- j)+ (av—- @+ a)(1+ k)
+ (-b— bs- a)(l- kE N.

Hence, we must haveM = N .

+ i)+ (- @- a)(1-i)+
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In the following, G? denotes the unit group of

Z2 [i,j,k], GLn (R) denotes the group of invertible m
X m matrices over a given ring R .

Theorem 3. 1 (I ) Supposen= 2 ,then @G= Z
b 2D 2.

(I ) Supposen= 2 whilez= 2 ,then Gt = {1+
TTe N} ,where N is presented in Lemma 3. 1.

(1 ) Suppose n = pit-- pu'n ,wherem= 1,pi,
---, pm are distinct odd primes and #1,--- ,t== 1. Then
U(H) = GL2(Zp1)D - D GLa(Zy ).

av) Supposen = 2fplt"" D'm ,where &= 1,m=
1,pi,-, pn are distinct odd primes and 1, Jte= 1.
Then U( H)= GD GL: (21 )D - D GL> (Z,1).

Proof (I )lItis easy toverify that @G= 72D 2
b 7.

(I YBy Lemma 3. 1, YV U= 1+ TwherelEe N,
it is easy to verify that 2\1\N(U) , thus by [2, Corollary
4. 4], we have UE G2 . On the contrary, by [2,
Corollary 4 4], we have H2 IM= Z>. Thus ¥ e G
,we must have V= 1+ T, wheeTE M= N.
Therefore G = {1+ TTe N} .

(11 ) By Theorem 2 1,we have Hi = Hp " D ...
D H W= M(Zn)D D Ma(Zy ). thusU( Hy)
= GL:(2%)D - D GL (7).

(V) By Theorem 2. 1,we have Hn= HD Hp 1
DD = HD M(2)D D M2 (Z,m),
thus U( H)= G'D GL2 (2,1 ) D D GL2(Z, ) .

References

[I] Pan CD,Pan C B. Elementary number theory[ M ].
Beijing Beijing university publishing company, 2005.
[2] We Y J, Tang G H. The spectra and radicals of
algebra Z, [i,j,k].
Teachers Education University, 2009,26(1): 1-10.
[3] Milies C P, Sehgal S K. An introduction to
group rings[M ]. Kluwer Academic Publishers Springer,
2002.

quaternion Journal of Guangxi

Guangxi Sciences, Vol. 16 No. 2, May 2009



