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Abstract By introducing a new perturbation strategy, a perturbed feasible sequential quadratically
constrained quadratic programming ( SQCQ P) algorithm is proposed. The algorithm is globally and
superlinearly convergent, and the uniformly positive definiteness assumption in the global
conv ergence analysis of traditional SQCQP algorithms is remov ed.
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Consider the inequality constrained nonlinear
programming problent

2t

s. tfi(x)=<< 0,i€ [ {1,2,-- m}, (D
where fi,i€ {0JU I R'—> R are smooth functions.
Denote the feasible set for problem (1) by F = {x&
R: fi(x)< 0,i€ I}.

During the past several decades, the researches of

def

sequential quadratic programming ( SQP) methods for
solving problem (1) have been greatly improved, but
when the problems to be solved are highly nonlinear,
SQP methods usually show slow convergence, or even
fail. For this, in recent years a so—called sequential
quadratically  constrained quadratic  programming
(SQCQP) method has been proposed“~ 4
patticular, Jian'"! proposed a feasible norm-relaxed
SQCQ P algorithm, and under weaker conditions, the
global, superlinear, and quasi-quadratic convergence are
obtained- Compared with SQP methods, at each
iteration SQCQP methods only need to solve a
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quadratically  constrained quadratic programming
( QCQP) subproblem, and without any correctional
directions the Maratos effect will not occur and
therefore the superlinear convergence can be obtained.
QCQ P subproblem is a quadratic approximation of the
original problem, so it is a better approximation than
the quadratic programming ( QP) subproblem solved
in SQP methods, therefore the expected numerical
performance of SQCQ P may be better than SQP.
Generally, in the global convergence analysis, the
positive definiteness or even uniformly positive
definiteness of the (approximate) Hessian matrix G of
the objective function fo is needed to be assumed,
which is considered as a strong assumption. In order
to overcome this shortcoming, Liu" presented a
perturbed QCQP subproblem by adding a positive
multiple of identity matrix toGo . By suitably adjusting
the perturbation parameters, the algorithm in
Reference [ 5] ( belongs to penalty function type
SQCQP algorithms) is proved to be globally
convergent only under the assumption that Go is
positive semidefinite. Motivated by the perturbation
idea in Reference [5],we propose a new perturbation
strategy (which is simpler than that givenin Reference

[5]) to modify the feasible SQCQP algorithm in
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Reference [1]. By using the newly proposed strategy
to update the perturbation parameters, we remove the
assum ption of uniformly positive definiteness used in
the global convergence analysis of the algorithm in
Reference [1]. The new algorithm is also proved to be

globally and superlinearly convergent.
1 Algorithm

We begin this section by making the following
basic hy pothesis.

Assumption 1 The functions fi,i€ {OU I, are
first-order continuously differentiable.

For simplicity, we denote the gradient vectors
V fi(x) by g(x),i € {0yU 1. For the current
feasible iterate X* € F, we consider the QCQP
subproblem as follows, which is perturbed from that in
Reference [1].

min Vz+

1
_min ,d (G+ ME)d

s.tgo(¥) a< Moz,

fi6d)+ () A+ Sd"Ga< VGz.i€ T,

< GlldIlP< e (2)

whereM and & are positive parameters, E is an nX n
identity matrix, Y(i€ {0}U I),c, I are positive
constants,and G' (i€ {OJU I) are symmetric, positive
semidefinite matrices. The QCQP subproblem (2) is
convex and therefore can be cast as a second-order
cone program and then be solved efficiently by using
interior point algorithms'®!,

We call (z¢,d) a KKT ( Karush-Kuhn-Tucker)
point for subproblem ( 2) if there exist multipliers_«,
w€ Rau'= (u,i€ I)E R” such that

(G+ ME)d + _igo(x) + D, (g () +
Gd)y+ Gwd= 0, (3)

Vi= Vi s+ > Vg, (4)
el
6< L (Vz— @(x")'d)= o, (5

0< u L (VSz - fi(x") - ga(™)'d -
() Gd)= 0.i€ 1. (6)
0= v L (e§F 0 —;qlld*llz)> 0, (7)

where notationx - Y meansx'y= 0.

The following lemmas show that the QCQP
subproblem (2) is well defined, and their proofs are
similar to those in Reference [1] due to the fact that

G+ MEisa positive definite matrix.
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Lemma 1
Then (i) QCQP subproblem (2) has an optimal
solution, (i) (z,d") is an optimal solution of
subproblem ( 2) if and only if it is a KKT point for
subproblem ( 2) .

Lemma 2 Suppose that Assumption 1 holds,and

Suppose that Assumption 1 holds.

that (z¢,d") is an optimal solution of subproblem ( 2).
Then (i) z<< - z—\lfo(cf)r(cﬁw ME)d'< -

2_\1/0M|cf||2, (i) z = 07d" = 67x" is a Fritz John

point for problem (1), (iii)if z < O, then d' is a
feasible descent direction of problem (1) at X'
Now we present the perturbed feasible SQCQ P
algorithm as follows.

Algorithm A

Step O Initiali zation. Choose V> 0,i€ {0)U I,
M> 0,%> 0,f> 1,e> 0,7€ (0,0.5),UZ0€ (0,
1),x"€ F,G (€ {0)U I) symmetric and positive
semidefinite. Set k:= 0.

Step I Solve QCQP. Solve subproblem (2) to
obtain a KK T point (Zk,dk) fk= 0, setd= lld"ll. ¥
ze = 0, stop.

Step 2 Line search. Compute the step sizeAr , the
first value of A in the sequence {l,U,U,-”} that

satisfies
folx'+ AdH< fo(x')+ Rao(x")'d, (8)
filx*+ adH<< 0,i€ 1. (9)

Il

Step 3 Generate perturbation parameter. If = g

< Z,setM 1= 0Mand d= 1I&N; otherwise setM 1=
M.

Step 4 Update. Set s X Nd Compute
new symmetric positive semidefinite matrices G ' (i€
{0JU 1) as well as positive patameters % 1 . Setk:= k
+ land go to step 1L

Remark From Lemma 2(iii), we know that the
line search in step 2 can be terminated in a finite
number of computations, and therefore Algorithm A is
well-defined. The updating strategy of perturbation
parameters in step 3 is new and different from ( more

predsely, simpler than) that in Reference [5].

2 Global and superlinear convergence

We first establish the global convergence of the
proposed algorithm without assuming that G s
(uniformly) positive definite. Once Algorithm A stops
finitely at x* , it follows from Lemma 2 that x* is a
Fritz John point for problem (1). Now assume that an
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infinite sequence {xk} of iterates is generated by
Algorithm A, we will show that there exists an
accumulation point x" of {x"} such that it is a KKT
point for problem (1).

Assumption 2 (i) The sequences {xk} and {Gf },i
€ {0)U I are bounded. (ii) The parameter sequence
{%} is strictly positive and bounded.

Define the index set of shrinking the perturbation
parameters by S= (kM 1= OM.

Lemma 3  Suppose that Assumptions 1 and 2
hold. Then the sequences { «}, {cf} and {zx} are
bounded.

Proof The boundedness of {_#} is obvious from
formula(4). From the last constraint of subproblem
(2),it follows that {d](} isbounded. This together with
the boundedness of {xk} and the inequality 0= zi=>

\—}Ogo(xk)Ta*E - TléHgo(xk)” ||Cf|| ShOWS that {Zc} is

bounded.

Lemma 4  Suppose that Assumptions 1 and 2
hold. Then there exists an infinite index set K such
thatlclérpaﬁ: 0.

Proof W e divide the proof into two cases.

Case I S'is an infinite set. From step 3 of
Algorithm A and S (0,1), it is obvious that there
exists an index set K such thatk]eirll{]dk = 0.

Case 2 S'is a finite set. From step 3 of Algorithm
A, we know that there existsa constantM O such that
M= Mor all k. Without loss of generality, suppose by
contradiction that there exists a constant K> 0 such
that

I IE= k&, for allk. (10)

This together with the last constraint of
subproblem (2) shows that

0 < 6anginf{ei}< &, for allk. (1)
Next we will prove that there is a constantA > Osuch
that the step sizeAe= X for allk .

Analy ze inequality (8). From Taylor expansion,
formula (5), Lemma 2(i) and formula (10),wehave

Fo(x+ A = fo(x') = Rgo(x)'d = (1-
Dago(x)'d+ oM< (1- DAVizi+ oA )< - _é(l

- I+ o)< - SMI- TR+ o@d).
This shows thatinequality ( 8) holds for allk andA> 0
small enough.
Analy ze inequalities (9). From Taylor expansion,
formula (6), Lemma 2(i), formula ( 10) and formula
FEAE 2000 SA % 1655 20

(11), we have fori€ I,
filx'+ Ad)= fi(x)+ Ag (X)) d+ o0 = (1
- NA) + VG () v o)< -

FAVEMIZ P+ o)< - Ve MR+ o).

This together with 2_1\/0\{61# MK > 0 thow that the
inequalities (9) hold for allk andX > Osmall enough.

Summarizing the analysis above, we can conclude
that there exists aA > 0 such thatAe= X hold for allk.
So from inequality ( 8),formula (5), Lemma 2(i) and
formula (10),we have

Fox" D= fox)+ Rgo(x")'d< fo(x*)+
ReVozes fo () - 3 RMIGIRS fo(x) - — KME,

for all k. Thus the sequence {f0 (Xk)} is decreasing.

Since {Xk} is bounded, there exist an infinite set K1 and

a point x such that ke]j;(nxk = x , and therefore
1

éjlr{n]fo(xk) = fo(x ).
fo(x ). This contradicts formula (12), and the proof

So we have ,r]lig}fo(xk) =

is com pleted.

Corollary 1  Suppose that Assumptions 1 and 2
hold. Then gmM: 0.

Lemma 5 Suppose that Assumptions 1 and 2
hold. ¥ limd* = 0, then limz = 0.

Proof From formula(5) and Lemma 2(i), we
have go (x")"d" Me<Z_ z=<C 0, for allk. This together
with k]ér}?‘f = Oand the boundedness of {x} shows that

limze = 0.

In order to obtain the global convergence, we
further make the following assum ptions.

Assumption 3  Suppose that the Mangasarian—
Fromovitz constraint qualification holds at each limit
pointx* of {xk} ,i. e., there exists a vectord€ R such

" " def "
that g (x )'d <0,V i€ I(x" )%= {i€ F fi(x )=
0}.

Assumption 4 The multiplier sequence {v«} is
bounded.
Theorem 1  Suppose that Assumptions 1~ 4

hold. Then Algorithm A edther stops finitely at a Fritz
John point x' for problem (1) or generates an infinite
sequence {xk} of iterates such that there exists an
accumulation point x which is a KKT point for
problem (1).

Proof
boundedness of {Xk}, we have that there exist an
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From Lemma 4, Lemma 5 and the



index set K and a point x such that (Xk,J(,Zk)"
(x ,0,0),k€ K. So following the proof of Theorem
3. 2 in Reference [1], we can conclude thatXx is a
KKT point for problem ( 1).

(i) fi,i€ {OWJ I ,are the third-
order continuously differentiable. (ii) The matrices G.i
€ {0U I, are chosen asG = V7 fi(x"),i€ {0
I ,ifk is sufficiently large, and the parameter sequence

{&} saﬁsfiesks]jgle%( = 0. (iii) The sequence {Gh} of

Assumption 5

matrices is uniformly positive definite,i. e., there exist
two positive constantsd and b such thatalldIl’< d" Gd
< blldII’,V d€ R'.V k.
Using Corollary 1, similar to Theorem 4. 2 in
Reference [1], we can prove the following result.
Theorem 2  Suppose that Assumptions 2~ 5
hold. Then Algorithm A is superlinearly convergent, i.

ko1 * k *
e, IIx" = x II= o(llx = x ).
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Table 1 Iterations\ function evaluations

Problem  dim N-WYLI1 N-WYIL2 WYL
1 2 35\70 35\70 40\ 84
2 4 37\ 74 3N\ 74 40\ 77
3 2 16\ 38 13\ 30 19\33
4 2 20 S5\ 14 6\21
5 2 16\ 38 11\28 F
6 2 25\50 23\ 47 F
7 4 31\ 62 30\61 31\ 65
8 2 18\32 13\28 10\ 21
9 4 27\ 54 25\50 F
10 6 53\ 108 50\ 103 55\ 100
11 100 285\574 217\438 292\ 580
12 2 26\ 52 25\50 27\ 58
13 4 27\ 54 26\ 52 F
14 100 79\ 161 78\ 158 82\ 166
15 2 70\ 141 69\ 140 65\ 131
16 2 272\ 544 267\ 534 260\ 551
17 20 99\ 201 98\ 196 103\ 220
18 200 629\ 1261 647\ 1295 650\ 1302
19 5 73\ 146 T2\ 144 F
20 11 75\ 150 74\ 146 74\ 148

4 Conclusion

In this paper, a nonmonotone line search has been
proposed for guaranteeing the global convergence of
W YL conjugate gradient method. It needs to estimate
the Lipschitz constant but the estimation is easy and
available in practical. In particular, if m = 0, then the
new nonmonotone line search will reduce to a
monotone line search and the W Y L conjugate gradient
method with the monotone line search has also global
comvergence. The Numerical experiments show that
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WYL method with the nonmonotone line search is
available and efficient in practical com putation.
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