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Abstract A new nonmonotone line search for the WYL conjugate gradient method is presented.
The nonmonotone line search can guarantee the global convergence of WYL method. Numerical

experiments show that WYL method with the nonmonotone line search is more available than

Armijo method.
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We consider the general unconstrained
optimization problem
min {f(x)l x€ R'}, (1)
where f: R —> R is a continuously differentiable
nonlinear function whose gradient is denoted by
g(x) . Theiteration of the gradient method is given by
(2)
traditional line

the function value

X1 = Xkt kdk.
In computing the steplength &,
to decrease

searches require

monotonically at every iteration Namely

S (xk1) < f(xk). (3)
However, the nonmonotone line search does not
impose the condition ( 3). In the already-existing
nonmonotone line search methods, the following line
searches are often used. The nonmonotone Armijo rule
as follows

For each k, letm (k) satisfy: m(0) = 0 and 0=
m (k)<< min[m (k- 1)+ 1,M ]fork= 1, whereM is

a nonnegative integer.
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Let k = Utg and pibe the smallest nonnegative
integer p such that f (xi+ Uadi )<< o X [f (xk-,) ]
+ Wagidi, wherea> 0,V& (0, 1), and UE (0, 1).

Similarly, the nonmonotone Goldstein rule can be
defined as follows f (xx + kdi)< B [ (xx-7) 1

+ Lglde,f (e + Tdo) = ggr;}?n’f“[f(m’j)]-i_

_zﬁg/{dk, where 0 < =X _2 < 1. The nonmonotone
Wolf rule can be described as follows f (xc+ Tedk )<<
omax [f () ]+ Whegldog(u + Fdi)'di =
ngrdk, where 0 < i< V2 < 1. Search direction dk
defined by

- g, ifk= 0,

: (4

- o+ Udi-1,if i= 1,

where gi denotes g (xx), U is computed by some well-

||gk||2 RP _
I|gk-lllz’w B

de =

known formulad ™ ”', such as U" =
kT k 1 /\T k k-1
gl (g = @-1) 1ps al (g — g1)

llge- 1117 U= di- (g - g-1)

Among them, PRP conjugate gradient method is
regarded as the best one in practical com putation.
However, PRP conjugate gradient method has not

. L. 46
global convergence in some conditions Some

modified PRP conjugate gradient methods with global
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comvergence were plroposedrr ! such as the WYL
conjugate gradient method”!, where theU is described

as follow s

r o gl
8 (8~ Jig_,1& 1)

lge 2

e = (5)

In this paper, a new nonmonotone line search is
proposed for the WYL conjugate gradient method.
The nonmonotone line search can guarantee the global
comvergence of WYL method under some mild

conditions.
1 New nonmonotone line search

The following two basic assumptions are often
used in the studies of the conjugate gradient methods.

( H1) The objective function f (x) is bounded
from below on the level set K= {x € R f(x)<<
S (xo)}.

(H2) In some neighborhood N of K f is
continuously differentiable, and its gradient g(x) is
Lipschitz continuous, that is to say, for all x,y& N,
there exists a constant = Osuch thatllg(x) = g(»)!l

< Lllx - yll

Throughout this paper we suppose that the
Lipschitz constantL of g(x) is a known prior or easy
to estimate in practical computation. There are some
estimations Lk for the Lipschitz constant L'

Give Lo > 0, in the k th iteration the sequence
{Lr} is taken by

L= max(Li- 1,%\%|)k= 1,2, (6)
or
Li = max(L- 1,%)](: 1,2, (7)

whereW- 1= xx — xi-randp-1= g — g 1.

New nonmonotone line search: given_€ (0,_5 )

2

PE (0,1) andc€ (= 1). Sets = E;Lf%%z and

T is the largest T in {Sk,Skd,Skdz,"'} such that

o Tax, [f(xx-i)] = fla+ Td)y= - ’I;gkrdk, and
satisfy the sufficient descent condition

g+ Td)d (v Tdo<< - cllg(xev Tdi) 117,

(8)

0,0 m(k+ 1< max(m(k)+ 1,

m), fork= 1, and L is estimated by formula (6) or

formula (7).
102

wherem (0) =

Algorithm 1

StepQ Choosexo& R’ and setdo= — go,Lo> 0,
k= 0.

Stepk Ifllgill = 0 then stop. otherwise go to step

Step2 Setxk 1= xk+ kdi, where dr is defined
by formula (4), U= U""and ¥ is defined by the new
nonmonotone line search.

Step3 Setk:= k+

Lemma 1. 1 Assume that ( H1) and ( H2) hold.
The sequence {x¢} is generated by Algorithm 1, then

Lo Li<X max(Lo,L). (9)

Proof By formula (6) and formula (7),we have
L= Li- == ---= Lo. By (H2),wehavellyeill = llg

— gl = xllL = WL m%ﬁk L.

land go to step 1.

Using Cauthy-Schw artz inequality, we get
Wiy Wy ol W Ty o ]

WP WP S IWP
< L,
therefore formula(9) holds.
Lemma 1. 2 If ( Hl) and ( H2) hold, then the

new nonmonotone line search is suitable for the WYL

ye- |l
V-

conjugate gradient method.

Proof On the one hand, since

ll}gl o max [fe-i ] ’—I‘ f(xe+ ’I‘dk)>
. fi— flu+ Td)
limy T

= — ngdk> — _ngol/c7

max [fiej 1= f(xe+ Tdk)
there is an k such that =% -

= - 7gkrdk,V Te [O,T( ]. Thus, let Tt = min(sk,j;),
yields

max [fi-;]— f(u+ Tdi)
6 mik) T = - gd VE

(10)

[0.7%1.
On the other hand, we can obtain

g(xe+ T d (o Ty - dig(xe+ Ta)IP.

(11)
By di 1= — g 1+ U e, wegetgk{ ide 1= gk o1 (-
ge 1+ Uoadi)= — llge 1P+ Ui 1gi 1di, by formula

(11) we get U 1gi 1di< (1- ¢)llge i, so formula
(11) holds if and only if

||gk+ 1| )

g 1(ge 1 — Jel’
Il gl

gt

ghde< (1= ¢)llge 1IP.

(12)
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1- ¢ lglP

When T < oL NdlP using Cauchy-Schw artz
inequality and ( H2), we have
gk{ 1(gk+ 1= ||||k+ |||| )
8k T d<
Il gl g 1=
_g_” k+||(lg|]‘|”||dk (||g1+ 1 - gk||+ ||gk - _g_||||k+ l k||)<
Il gee 1 1Pl ll
Tl g 1= gille gl g <
2lgis 1l [ldll 2lgis 1Pl
S L g 1 - gl AT (1
lgel el
c)llge P
2
Let ¥ = min(Tk,leHdsz), we can prove that the

new nonmonotone line search is suitable for the WYL

conjugate gradient method whenTE [0,%].
2 Global convergence

Lemma 2. 1 Assume that ( H1) and ( H2) hold.
The sequence {x« } is generated by Algorithm 1, then

lal< (1+ HH=Diglifory k. (13)
Proof Fork= 0, wehavelldill= llgl< ( 1+

M%))Hgk” Fork= 1, by Lemma 1. 1, we have

L= el 1 ellal?
T TR

inequality and the above inequality, noting the WYL

By Cauchy-Schw artz

formula and ( H2) ,we have

lde Il = 1= ge 14+ UTdlld < llige 111+
Ilgs 1l
||gk+ 1(gk+ 1 — ||gk|| gk)”
_ Il g 1l
lge v = 1 &l ||dk||
(10 H=Dyiig. 11
Theorem 2. 1  Assume that ( Hl) and ( H2)

hold. The sequence {x} is generated by Algorithm 1,
then there exists 2> Osuch that
max, [fi-i]- fo = Dlgl. (14)

6= 7~ m(
Proof Let Z = infii{k}). If > 0, then we
have
Lgd= Zcllgl?,
(15

_ Zc we can prove formula (14) holds.

axk) [fei 1= feo == -

by letting Z=

For the contrary, assume thatZ% = 0, then there
JE A 2000 SA F 165% 28

exists an infinite subset K< {0, 1, 2,--- } such that
im L= 0. ( 16)
IE K. droo
— cllgll?
By Lemmas 1. 1 and 2. 1, we have S= 12chﬂ‘cglkT>
1- ¢ L(l- ¢). .

2
2max(Lo,L) (1+ Lo )" "> 0. Therefore, there

is ak’ such thatldg S,V k= k' , andk€ K. LetT

= 7] -at least one of the following two inequalities

g, i 1= f(oer Ta)= - Tldr,

(17)

and
g(xi+ Ta) d(xe+ Tdy< - dig(x+ Tdo)lP,
(18)
does not hold for &= k' and k€ K.

If formula (17) does not hold, then we have f* —
o+ Td)<< r{lax [fi-i] = fax+ Td) <-
_Tgk dr, where k= k' and kK€ K. Using the mean
value theorem on the left-hand side of the above
inequality, there is 0+ € [0, 1] such that — g (xc +
0TdY de <-  Talde, thus g(xe + 041de) de >
_ g di, wherek=> k' andk€ K. By (H2), Cauthy-
Schwartz inequality and the above inequality, we have

TNa IP= Mg (xe+ Tdi) = gl NdlE= (g (xe+ Tak)

- @) d>- (1- Hgd= (1- )clgll’. By
Lemma 2. 1 and the above inequality, we have k=
d(1-_Hellgll’ d(1-_)e
=
L ||dk||2/ > 07 Wherek

L(1+ L(1- cl)z
Lo

= k' andk€ K, which contradicts to formula (16).

If formula ( 18) does not hold, then we haveg (x«
+ ) d(xe+ Tdo) > - cllg(xe+ Td)IP, and thus
llge all

loall )
IE £k g 1dk >

g 1(ge 1

Il g
the above inequality, ( H2) and Cauchy-Schwartz
Alge 1PdPIL

P > (1=

(1- o)lige 1IF. By

inequality, we can deduce

P
) lige I so wehave IL Hd“ L=< By Lenma
2. 1,we have
T dzaje —Aimd s
2L (14 =

where = k' and k€ K, which also contradicts to
formula ( 16), this shows that %> 0and formula ( 15)
always holds. By letting Z= _ Zc, we can obtain
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formula( 14).
Remark Theorem 2. 1 shows that if m = 0,
then the corresponding WYL conjugate gradient
method reduces to a monotone descent method. In the
sequel, we assume thatm= 1.
Lemma 2. 2 If the conditions of Theorem 2 1
hold, then
max [f (o ) ] <

. 2
K\Hjli}rr}zngmH -7,

nax [f (xme-1ei) ] = Z
(19)

and

oo

2 min || g ~1ll? <4 oo,

=1 s
Proof By (HI) and Theorem 2 1,it suffices to
show that the following inequality holds forj= 1,2,

(20)

- m,
I (eme )<< max [f (xma-19 i) ] - Z|gmn i-lP,
(21)
Theorem 2 limplies that
I (oms )<< nax [f Gomi-i) 1= Dlgmll?, (22)

which yields that formula (21) holds for j = L
Suppose that formula (21) holds for any j: K < m
— L. With the descent property of dk, this implies that
max [/ (xne ) & max [f (xmo- 1 0) . (23)
By the induction hypothesis, Theorem 2. 1 and formula
(23) , we obtain
F o o 1) max [f (xm j-1) ] = Algu I’

i~ m
max { max f (ona- v+ 1), paxf (xme i) } = Algm P

max Lf (xma- 1) ] = Algme ;1P
thus, formula ( 21)
induction, formula (21) holds for 1<X j<C m, this
shows that formula (19) holds. Sincef (x) is bounded
from below by (HI),it follows that max [f (xm i) |

is also true for j + 1. By

> — ©© | by summing formula (19) over/ ,we can get

oo

>} minllge
min llgus -l

<+ ©©. Therefore formula(20)
=1 Eim

holds.

Theorem 2. 2 Assume that ( Hl) and ( H2)
hold. The sequence {x#} is generated by Algorithm 1,
then  lim llgell = 0.

Proof By Lemma 2 2 and letting llgnyll =

I

kn}yn”gmh - 1||, we havez ||gh<1) <+ 9, which

yields

104

{]*iglngh(z) =0 (24)

The new nonmonotone line search implies that ngdk
< - digIP, which results in

lldi IE= cllgill. (25)
By using Cauthy-Schwartz inequality, Lemma 1. 1 and
2. 1, formula( 25) and the new nonmonotone line

search, we have

||gk+ 1||: ||gk+ 1= gk+ ng< ||gk||+ ||gk+ 1 — gk”
< llgells TLIAS Ngelis Tz(e H=C)igl)
1= _(u) _|gi
< gl 5~ =) & ” L lgdi[1
1- ¢ L(1- ¢) -
+ g L+ Lo ) gl 1+ 2cL °L(1+
g%))]: mllgll (26)
_ 1- L(l- ¢
wherem = 1+ Lo L(l I ). Formula

(26) implies that llgne 1 I mllgne e - 1<
m'llgwoll for j = 1,2, ,m, by formula (24) we

obtajnk)h;rg llgll= 0.

3  Numerical experiments

Choose 20 numerical examples(http / /www. ici
WYL

conjugate gradient method with the new nonmonotone

ro/camo /neculai /ansoft. htm.) to test the

line search and com pare the numerical results with that
of the WYL conjugate gradient method with the
nonmonotone Armijo line search.

In the new nonmonotone line search, we set_ =
0.38,d= 0.618,Lo= l,c= 0.618andm= 3. If L
is estimated by formula (6) or formula (7) then the
corresponding WYL conjugate gradient method 1is
denoted by N-W YL1 or N-W YL2, respectively. W YL
denotes the WYL conjugate gradient method with the
nonmonotone Armijo line search. We denote the
dimension of problems by “ dim”’. The stop criteria is
llgel 107°
table 1

As you can seein table 1, the new nonmonotone

. The numerical results are summarized in

line search is available and efficient for the WYL
conjugate gradient method, and the estimation formula

(7) is superior to the estimation formula ( 6).

(T 4% % 108 Continue on page 108)
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index set K and a point x such that (Xk,J(,Zk)"
(x ,0,0),k€ K. So following the proof of Theorem
3. 2 in Reference [1], we can conclude thatXx is a
KKT point for problem ( 1).

(i) fi,i€ {OWJ I ,are the third-
order continuously differentiable. (ii) The matrices G.i
€ {0U I, are chosen asG = V7 fi(x"),i€ {0
I ,ifk is sufficiently large, and the parameter sequence

{&} saﬁsfiesks]jgle%( = 0. (iii) The sequence {Gh} of

Assumption 5

matrices is uniformly positive definite,i. e., there exist
two positive constantsd and b such thatalldIl’< d" Gd
< blldII’,V d€ R'.V k.
Using Corollary 1, similar to Theorem 4. 2 in
Reference [1], we can prove the following result.
Theorem 2  Suppose that Assumptions 2~ 5
hold. Then Algorithm A is superlinearly convergent, i.

ko1 * k *
e, IIx" = x II= o(llx = x ).
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Table 1 Iterations\ function evaluations

Problem  dim N-WYLI1 N-WYIL2 WYL
1 2 35\70 35\70 40\ 84
2 4 37\ 74 3N\ 74 40\ 77
3 2 16\ 38 13\ 30 19\33
4 2 20 S5\ 14 6\21
5 2 16\ 38 11\28 F
6 2 25\50 23\ 47 F
7 4 31\ 62 30\61 31\ 65
8 2 18\32 13\28 10\ 21
9 4 27\ 54 25\50 F
10 6 53\ 108 50\ 103 55\ 100
11 100 285\574 217\438 292\ 580
12 2 26\ 52 25\50 27\ 58
13 4 27\ 54 26\ 52 F
14 100 79\ 161 78\ 158 82\ 166
15 2 70\ 141 69\ 140 65\ 131
16 2 272\ 544 267\ 534 260\ 551
17 20 99\ 201 98\ 196 103\ 220
18 200 629\ 1261 647\ 1295 650\ 1302
19 5 73\ 146 T2\ 144 F
20 11 75\ 150 74\ 146 74\ 148

4 Conclusion

In this paper, a nonmonotone line search has been
proposed for guaranteeing the global convergence of
W YL conjugate gradient method. It needs to estimate
the Lipschitz constant but the estimation is easy and
available in practical. In particular, if m = 0, then the
new nonmonotone line search will reduce to a
monotone line search and the W Y L conjugate gradient
method with the monotone line search has also global
comvergence. The Numerical experiments show that

108

WYL method with the nonmonotone line search is
available and efficient in practical com putation.
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