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Abstract Let G be a group, denote Mu (G)= {M| M is a maximal subgroup of G such that H
M} where H is a given normal subgroup of G. We investigated the properties of s—completion by
the set Mu (G), and obtained some new conditions for the solvability of finite groups.
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Given a maximal subgroup M of group G, a
completion C of M in G is a subgroup such that L
M while H= M whenever H < C and H4 G A
completion C of M is called maximal if M has no any
completion which contains C properly. K (C) denotes
the group generated by all proper subgroups of
C which are normal in G, then K (C) < C and
K(C)4G.

In reference [1], Deskins introduced the concept
of completions for a maximal subgroup of a finite
group- In reference [2], Deskins showed that a group
G is solvable if and only if for every maximal
subgroup M of G has a maximal completion C such

that C/K(C) is nilpotent with Sylow 2-subgroups of
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class at most 2. Deskins conjectured that a group Gis
supersolvable if and only if every maximal subgroup
M of G has a maximal completion C such that CM=
G and C /K (C) is cyclic. In fact, Bollester—Bolinches
and Ezquerrom pointed out that the conjecture is
false Later, Zhao'' proved that the group which
satisfies the conditions in Deskins * conjecture is
supersolvable or has a homomorphic image
isomorphic to S4. In reference [5], Ii got a complete
characterization of supersolvable groups by means of
maximal completions. In reference [6], Li and Zhao
have further weakened the condition of maximal
completion by defining s—com pletions.

In this paper, we investigated the properties of s—
completion by the set M# (G), and obtained some
new conditions for the solvabhility of finite groups,
where Mu(G)= {M| M is a maximal subgroup of G
such that H=/ M }.

Throughout this paper, all groups are finite
notations are

groups. Our terminologies and
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standard, see reference [7] and reference [8].
1 Definitions and 1 emmas

Definition 1. 1’
of group G, a completion C of M is called an s-

Given a maximal subgroup M

completion if either C= G or there exists a subgroup
D of G, which is not a completion of M, such that D
contains C as a maximal subgroup.

A maximal completion must be ans—completion.
The examples given in reference [6 | show that the
converse is not true in general.

Example 1. 1 Take G= Aut( PSL(2, 25))=
[PGL(2, 25) |Z2, the semidirect product of PGL( 2,
25) by the cyclic group Z2 of order 2% Write Gi=
PGL(2, 25) and G= PSL(2, 25). Then G has a
unique chief series G> Gi> @> 1. The group G2 has
maximal subgroups D24 and D26, the dihedral groups
of order 24 and 26, respectively. Furthermore, G has a
maximal subgroup M = N¢ (Dx). Take C= Ng
(D26 ), a maximal subgroup of Gi. Since C has no
non—trivial G-invariant subgroup and C is not
of M.

Furthermore, C is an s—vompletion of M because G is

contained in M, it is a completion
not a completion of M. We see that C is not a
maximal completion of M since No(Dx) is also a
completion of M and contains C properly.

Example 1. 2 Let G= SX Z2. Take M= SX
Z>, which is a maximal subgroup of G, and take a
cyclic subgroup C of G with order 4 contained in S,
then C is an s—completion of M but not a maximal
completion of M.

Definition 1.2 M#(G)= (M| M is a maximal
subgroup of G such that H=/ M}, where H is a given
normal subgroup of G.D(G)= (M < GG M| isa
composi te number}.

Lemma 1. 1! Let F be a formation and G be a
group. If G&/ F then there exists a normal subgroup
N of G such that G/NE b(F),the Q-boundary of F,
i. e, G/NE/F but every proper homomorphic image
of G/N belongs to F. Furthermore, G/N has a
unique minimal normal subgroup.

Lemma 1. 2°  Let Ghea group and M be a
maximal subgroup of G. Assume that N is a normal
subgroup of G contained in M such that G/N has a
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unique minimal normal subgroup U /N with UL M.
Furthermore, assume that C is an s—completion of M
such that C/K(C)E F,where F is a subg roup—closed
hom omorph, but U/NE/F. Write C = NC. Then C
is ans-completion of M in G satisfying

(1) C€ K(C )inF and N= k(C );

(2) C is a maximal subgroup of the group

c U.
2 Main results

Theorem 2. 1 Suppose G is afinite group » H is
a normal subgroup of G. If for every non-nilpotent
maximal subgroup M M#u(Gf) D(G), there exists
an s—completion C of M such that C/K (C) is
nilpotent with Sylow 2-subgroups of class at most 2,
then H is solvable.

Proof Assume the result is not true, and let G
be a counterexample. Since the class of all solvable
groups is a saturated formation, by lemma 1. 1, there
exists a normal subgroup N of G such that G/N has a
unique minimal normal subgroup U /N (so U IN=H/
N), which is insolvable. Then U /N is a non-abelian
characteristically simple group. In particular, U/N
has no non-trivial normal p-subgroup for any prime
p- We claim that G has a nonmilpotent maximal
subgroup M of composite index such that N& M,
but UE M. For this, let g be the largest prime factor
dividing | U /NI, and Q/NE Syk(U/N),then Q/N
is not normalin G/N and hence Now (Q/N) <G/N.
So there exists a maximal subgroup of G/N denote
M IN such that New (Q/N ) < M /N. This implies
that M contains N6 ( Z(J (Q))) and N. By the
Frattini argument, G= N¢ (Z(J (Q)))U= MU,so U
& M. Observe that | G: M| = | U: (MN U) I =
1(modg), sol G M| must be composite- If M is
nilpotent then, as a subgroup of M,Nv(Z(J(Q)))is
also nilpotent. Note that ¢ is odd, the Glaubermen—
Thompson Theorem asserts that U is g-nilpotent,
contrary to the fact that U/N is a non-abelian
characteristically simple group. Hence, ME D (G).
Clearly, H= M, so ME Mu (G)) D(G). By the
hypothesis, M has an s—completion C such that C /k
(C) is nilpotent with Sylow 2-subgroups of class at
most 2 Of course, the class of all nilpotent groups
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with Sylow 2-subgroups of class at most 2 is
subgroup—closed homomorph, and U/N does not
belong to this class By lemma 1. 2, there exists an s—
completion C of M such that N= K(C) and C is a
maximal subgroup of UC. Now UC/N= U/IN" CIN
and C/N= C/K(C) is a nilpotent maximal subgroup
of UC /N with sylow 2-subgroups of class at most 2.
By the Deskins—hnko-Thomopson Theorem'”, UC/
N must be solvable, so U/N is solvable, which is a
contradiction. The proof of the theorem 2. 1 is now
complete

Corollary 2 1

only if for every non—nilpotent maximal subgroup M

A group G is solvable if and

of G of composite index, there exists ans-completion
C of M such that C /k(C) is nilpotent with Sylow 2-
subgroups of class at most 2.

Proof Set H= G,so Mu(Gf) D(G)= D(G),
by theorem 2. 1, the sufficiency part is hold, and the
necessity part of the corollary is obvious.

Corollary 2. 2

only if for every non-nilpotent maximal subgroup M

A group G is solvable if and
of G of composite index, there exists a maximal
completion C of M such that C/K (C) is nilpotent,

with Sylow 2-subgroups of class at most 2
Proof

completion, by corollary 2. 1, the conclusion holds.

Since a maximal completion is an s—

From the definition of Deskins “completions, we
see that a completion of maximal subgroup M may be
a conjugation of M.

Theorem 2. 2 Suppose G is a finite group , H is
a normal subgroup of G If for every M Mu(GY) D
(G), there exists an s—completion C of M such that
C /K (C) is nilpotent and C%E M for any X G, then
H is solvable.

Proof Assume the result is false and let group
G be a counterexample. As in the proof of theorem
2. 1, there exists a normal subgroup N of G such that
G /N has a unique minimal normal subgroup U /N (so
UIN= H/N) which is insolvable, and G has a
maximal subgroup M of composite index such that N
=M but U= M. So ME Mu(Gf) D(G). By lemma
l. 2, we may choose an s—completion C of M such
that C /K (C)= C /N is nilpotent, "% M for any xE
G,and C is a maximal subgroup of UC.
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Consider the group E/N= U /N C/N. SinceC/
N is a nilpotent maximal subgroup of E/N, by a
theorem of Rose ', K /N is normal in E /N, where
K IN is the normal 2-com plement of C /N. But U/N
has non-trivial solvable normal subgroup, so K /N
must be the identity group. Consequently, C/N is a
2-group and hence be a Sylow 2-subgroup of E /N .

Write T= () U, then N= T and T/N is a
Sylow 2-subgroup of U/N. By the Feit-Thompson
Theorem on groups of odd order, T/N7 1 and T is
non-normal in U. Applying the Frattini argument, we
have G= No (T)U= M U, where M is a maximal
subgroup of G containing N6( T). It is obviously that

|G M | isanodd numberand C=M also M\ U
4 M and C=E\ M but EEM . We see that A
M = C sinceC is maximal in E. It follows that C(U
NMH)=ct M =K1 M =C.so(MN U)IN
is a 2-group. Therefore | G M | = | U: (M N U)|
can not be a prime, otherwise U/N would be solvable
by the Burnside (p, g) -Theorem, a contradiction.

Now M is a maximal subgroup of G with
composite index and N& M but UL M. By
hypothesis, M  has an s—-completion C such that
C /K(C* ) is nilpotent and (d )ngr for any x&
G Replacing M by M . we have N= K (C ) and
C INisa 2—subgroup of G/N. Since M /N contains
a Sylow 2-subgroup of G/N , by the Sylow Theorem,
there exists an element x in G such that (C )"=
M , which is final contradiction. Thus, the proof is
complete.

Corollary 2. 3
only if for every maximal subgroup M of G with

A group G is solvable if and

composite index, there exists ans-completion C of M
such that C /k (C) is nilpotent and CXQM for any x
€G

Corollary 2. 4 A group G is solvable if and
only if for every maximal subgroup M of G with

composite index, there exists a maximal completion C
of M such that C/K(C) is nilpotent and C'%E M for
any X< G.

Theorem 2. 3 Suppose G is afinite group » H is
a normal subgroup of G If for every normal maximal
subgroup M Mu (Gf) D(G),there exists a normal
s-completion C such that C /K (C) is solvable, then
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H is solvable.

Proof Assume the result is false and let group
G be a counterexample. As in the proof of theorem
2. 1, there exists a normal subgroup N of G such that
G /N has a unique minimal normal subgroup U /N (so
UIN= HIN ) which is insolvable. Set ¢ be the
largest prime factor dividing | U /N| and Q /NE Sy},
(U/IN). So Qis not normal in U and we can choose a
maximal subgroup M of G to contain N6(Q) and N.
By the Frattini argument, G= N6 (Q) U= MU, so U
& M. Observe that | G: M| = | U: (M) U)I =1
(modg), hence | G M| is composite So ME M (G)
(1 D(G), by the hypothesis, there exists a normal s—
completion C of M such that C /K (C) is solvable. By
lemma 2. 2, we may choose an s—com pletion C =CN
of M such that C /k(é )= C /N is solvable, and
C is a maximal subgroup of uc .

Consider the group E/N= UIN" C IN. Since
C /N is a normal solvable maximal subgroup of E /
N, thus E/C is solvable, consequently U /N is
solvable, a contradiction. So the proof is complete.

Corollary 2.5 Suppose G is a finite group, if
for every normal maximal subgroup M< D(G),there
exists a normal s—completion C such that C /k(C) is
solvable, then G 1is solvable.

Corollary 2. 6  Suppose G is a finite group, if
for every normal maximal subgroup M< D(G), there

exists a normal maximal com pletion C such that C /k

(C) is solvable, then G is solvable.
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