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Abstract The compound Markov binomial model which was first proposed by Cossette et al.
(2003) is extended to the case where the premium income process, based on a binomial process,is
no longer a linear function and its ruin probability is investigated. Recursive formulas are provided
for the computation of the ruin probabilities. The Lundberg exponential bound is derived for the
ruin probability.
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The compound binomial risk model has been
studied by various authors, and some extensions have
been made on this model 1recently[1~ °! Reference [7]
and reference [ 8] study a compound binomial risk
model with time-correlated claims, that is each claim
causes a by-claim which may be delayed to the next
time period- The compound Markov binomial model,
an extension to the compound bhinomial model, was
first proposed by cossette et al.'” as a discrete—time
model which introduces time—dependence in the claim
occurrence process

In this paper, we extend the compound Markov
binomial model to case where the premium income

process, based on a binomial process, is no longer a
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linear function. We define the surplus process of an
insurance company by

U= w+ M- S, NJIE N, (0. 1)
where u = w0 corresponds to the initial surplus,
premiums are payable at a rate of 1 per ime unit, S=
Yi+ Yot

in period kK (k€ N ). We suppose that one claim can

-+ Yk and Yk is the eventual claim amount
occur per period at most. The r. v. Yiis then defined

v Xi, = 1,
k=
0, L= 0,

where the occurrence r. v. I+ and the individual claim

as

(0.2)

amount 1. v. Xt are independent in each time period.
The r.v. Ix submits to Bernoulli distribution with mean
¢ (0,1) . {k., /& N} is a Markov chain with a two—
ition probability matrix

- pwo poi _

po pii
1- (1= 9¢ (1- ¢
(1-9(1-q) % (1-9g ~
where P(l« 1= Jjl I= i)= py fori,j&€ {0,1} and k&

N , initial probabilities P(fo= 1)= g= 1- P(lo= 0),
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¢ (0, 1) and € is the dependence parameter (€< €<
1). We assume Xk is a strictly positive discrete r- v-
{Xi, K& N }is a sequence of i-i. d. . v.
probability mass function (p. m. f.) f, cumulative

s with

distribution function(ec. d. f. ) F, probability generating
function(p- g- f. ) 7 and mean _

{Mi, k€ N } is a binomial process with
parameter d, independent of {&,k& N} and {X«, IE
N ). Mi= 2+ 2%+ -+ 4, k& N, where M is
corresponding to the number of the customers up to
time k. We denote by 4= 1 the event where a
payment occurs in (k= 1,k ] and 4= O the eventwhere
no payment occurs in period (k— 1,k]. Let P(4= 1)
= d P(4= 0)= 1- d(0<& 1).

Moreover, we assume that the r. v. s &k and X«
are defined such that (I 0)g = d, where0 is the
strictly positive relative risk margin.

In this paper, we derive recursive formulas of the
infinite ruin probahilities and a Lundberg ex ponential
bound for the ruin probability in the extended
compound Markov binomial model (0. 1).

1 Definitions and notations

Let 7= {k& N ; Ut < 0} be the time of ruin
The conditional and the unconditional infinite-time
ruin probabilities are denoted by J(u| i) and J(u)7
where

Jul iy= P(T <ol o= i),i= 0,1,

Hu)= P(T<).

Denoted Qul 7)

time non-ruin probabilities and infinite-time non-ruin

(L1
(L2

and Qu) the conditional infinite—

probabilities respectiv ely, where

Qul iYy= 1- J(uli)= P(U= 0,Y IE N | L= i),
= 0,1, (1.3)

Qu)= 1- J(u)= U= OYIEN ). (L4

Clearly, we have

Qu)= (1- ¢)Qul O ¢Xul 1). (15)

Define

E(e "™ "] Io= i)= (1= dypior dpwe "+ (1-
dypn B¢ dpi Ee " = dE(e TV o= i)+ (1
- ) E(e " 1= ). (1.6)

Also, let Ro and Ri be strictly positive real numbers
such that

E(e "] = 0)= 1 (1.7
and

Ee """ = 1= 1. (1. 8)

The solutions Ro and R of formulae( 1. 6) and
formulae( 1. 7) exist if E(Y1— Mil Io= i) < 1,i= 0, 1.
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ZIO(M— 1- kl 1) f (k) -

2  Main resul ts

Theorem 2. 1 The conditional infinite-time non-
ruin probabilities are given by

Qul 0)= ((po dpo)Qu- 1 0)= (1- dypor

dpo;ﬂu— k1) f (k)1

(2. 1)

(proQul O (1- d)%)l()(u— Kl 1y

dpoo,for u= 1,2, 3, ;

Qul 1)=

w1

J (k) dgquw 1= K 1)f (k) /(po— df (1)),

foru= 1,2, 3d (2.2
_dqu

Qad 0)= 31- g (2.3)

Qo )= —22%—Od o (2. 4)

- cdr()
Proof We consider ()(u‘ 0) and (0 ul 1), in the
first period (0, 1] and separate the four possible cases

as follows

(1) Ai= {no premium arrives in (0, 1] and no
claim occurs either};

(2)A2= {a premium arrives in ( 0, 1] but no claim
occurs };

(3)A3= {no premium arrivesin (0, 1] but a claim
occurs J;

(4) A+= {a premium arrives in (0, 1] and a claim
occurs too}-

According to the laws of conditional probability,
the conditional infinite-time non—ruin probabilities is

equal to \
Qul i):;lo(ul i, Ai)P(4li),i= 0,1
So we have
Qjl 0)= (1- d)po /1 0)+ dpoo()(ﬁ 1l Op
(1- d)poZ Qi ) (e dpo, O 1-
Kl 1) f(k (2. 6)
O(JI 1)— (1- OpQjl 0)+ dprQ 11 Op
(1- d)plz (I] k| l)f )+ dplg ()(J+ 1-

k| l)f( )’]: 07 19 27
From which follows formulae(2. 1).
By substituting formulae( 2. 6) in formulae(2. 7),

(2.5)

(2.7)

we have

Qjl y= 201 0)- (1- d)pokZ;l%—kl 1y

dpoz Qj 1-H 1) f (k)

1

(1- d)pll'
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Z;l Q- K 1 f (ke dp@l Qi+ 1= & 1) f (k)
(28
Which leads to the recursive equation (2. 2).

To prove formulae (2. 3), we sum for each
equa]jty (2 6) and (2.7) Which result in

u:

2 LAl o= (1- d)poz Q;l 0+ dpoz A+
10+ (1- d)pog(gq(lj— ) f (e

dpoa 2 Qs 1= K 1)f (k)

and

(29

u—1

2 Ll D= (1= d)pmz Qjl 0+ %Z A+

10+ (1= dyp FOZ;QJ-— K0S (kyr

dp@;}lqﬁ 1- i 17 (k) (2. 10)

Since poo= 1- poi, pu= 1- puo, we rewrite

formulae(2. 9) and formulae(2. 10) as follows
u— 1 u— 1 1

(1= AP, Q0 &u Qe 11 0)-20 Q1
0= por[(1= A2, Ol 0 & Qe 11 0= (1-

dégjlm— K1) f (k) - EEO(# 1-

k1) f (k)] (2. 11)
and B ny

24, Q1 - (1= dps 20 Q- &l 1y
- ) 2 U =4 D7 0= pol(1-
dE Qi op dz QU 10— (1- 4R 2 Q-
K1) (k) - d;(;l(m -HDfR) L (212

Combining formulae(2. 11) and formulae(2. 12), we

have

dZ Q1 0) E Qjl 0)= &IZ Qjl 1)

(1- d@o(le DF(u-1-j)- 4,200(1\ D F(u-
I (2. 13)

which becomes

Qul 0= Q0 0)+ (1- dE Qjl 1(1-

F(u- 1-j))+ dgoqj\ 1) F(u-j) . (2.14)
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Since Qoo | /)= ullgn(XU| i),i= 0,1 and Op= | 0)

= Qo | 1)= 1, then we take > in formulae(2. 14)

and find

por EX — d d_
Qo 0= 1- o d ‘d(1 q)

which corresponds to the formulae (2 3).
We derive formulae ( 2 4) by combining both
formulae(2. 5) at j= 0 and formulae(2. 6) at j= 0.

(2. 15)

Q0 0= (1- d)poQ 0 0p dpwO(1 Oy
o1 1)1 (1), (2. 16)
and

Q0 1= (1- dprQ0 0p dpX 1 Op
dpnO( 1 1) f(l (2.17)
that is formulae(2 4) .

Remark

O(0)= (1- q)O( + 0l 1)=
(1- ¢dr (1)) (d- gEX) (2. 18)

d(1- cdr (1)~ (1= 9g)°

From transition probability matrix, one can see
that the © parameter introduces a positive correlation
among the claim occurrence r. v. {L, k& N }. We
show in the following theorem that O(u) (u€ N)

€ increases

decrease as the dependence parameter
resulting in the increase of Qu) (¥ N) with €.
Theorem 2. 2

non—ruin probahilities O(u) (€ N) decrease when €

The nonconditional infinite—time

increases

Proof we prove (dl d€)O(u)< 0 for u€ N by
induction.

Since the infinite-time non—ruin probability can be
written as

Qu)= (1= ¢)Xud O ¢ul 1). (2.19)

We prove that the derivative of both Qu‘ 0) and O
(ul 1) (4€ N) with respect to € are smaller than or
equal to 0.

First, we demonstrate

(d/d¢)Qul i< 0. fori= 0, 1. (2. 20)
By formulae( 2. 3) and formulae(2. 4), wehave

(d/dS)Qd 05 0, (2.21)
and
(d/de)Qa )= (d/de )(—_%qd

(poo— CO}f( 1))
which imply (d 1490 07< 0. Now, we assume that

(d/de)Qyl 0 0, (2.23)
and
(d/d9Qyl B< 0 (2. 24)
are verified for j= 1,--- ,u— 1 and we prove that these
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inequalities also hold for j= u.

From formulae(2. 14), one can find

Q0= Qo 0+ 2

dplo[(l_
R QN (1= Fl- 1= )+ 25 Q)
D F(u = j)1).

and given formulae( 2 24) , concludes that
(d/d%Qul 0 0
From equation( 22,

L Qul = (Pl 0+ (1- d)E Qu-

(2. 25)

one can find

Kl 1) f (k)+ dE LQuer 1=K 1) £ (k) /(poo-

cdr (1) k dCT’“’—XuI Op

= edr(1)
(1= ) Cf (u=j)+ dCf( 1- )y .
) bt =Dl oy
d 10 .
(O 0)§cm+2 [(1= ) (u= )+

df(’/"F 1-j) ]QJ| l)dcpoo Cdf(l) (2.26)

Since poo — Cdf( D= (1= ¢) (1= g <(1- Cy( 1)y
0.
The right-hand side of formulae(2 26) can also be

written as

_(1=q) (1= df(m
e < (D)’ quE [(1- dy

flu=j+ o (1=

which is equivalent to

—q_
) I G edg

—q_ _( _d
(e cdf (1)) 1= Qul 0 (1= dr ()

u-1

L= =y & e 1= )10 1) =

1- g
Cpoe cdp (12 1= Al 0) (1= dr (1) (po -
cdr (1)Qul 1) - p1oQul 0) ] (2.27)

Replacing formulae(2. 27) in formulae( 2 26) and
after further simplifications, we obtain
s . 1-q
(RO D= e g )
[Qul 1= Qul o) . (2.28)
In order to compare Y ul 1) and O(ul 0), we

rearrange formulae (2. 6) and formulae (2 7) as

follows

(1= A2 Q= # 7 (ke &3 Ol 1-

D)k - (1= dQul 0)= A+ 1 0) 1= Qul 0) -
(1- Hu 0)— A 1 0) (2.29)
and
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(1= A2 O &l (0 & Qe 1-

=
k1) fk) - (1= YOl 0)= du+ 110) 1= Qi

- (1- §Qul 0)- s 1l 0). (2. 30)
The combination of equations formulae (2 29) and
formulae( 2. 30) leads to

Qul - (1= HQul 0= s 11 0)  pu

Qul 0)- (1- HQul 0)— e+ 11 0)~ por ™~
C
NG
from which we deduct
Qul 1) - Oyl 0)= (—d (Xul 0)- O+ 1l

0))< 0. S we obtain
(d/d)Qul 15 0. (2.31)
Given formulae (2 25) and formulae( 2 31), we
conclude that O (u) (1€ N ) decrease as the
dependence parameter € increases since
(d/d)Qu)= (d/d®) [(1- g)Otul 0+ ¢Qu
1= (1= ¢) (d/d9)ul Op ¢(d/d)Qul 1 0.
(2.32)
We derive an exponential bound on the ruin
probability within the extended compound Markov
binomial model which is similar to the Lundberg
exponential bound within the classical risk model
Lemma 2. 1 In the extended compound Markov
binomial model(0. 1), we have

R = min(Ro,Ri)= Ri. (2. 33)
Proof Define
g(r)= E(e "™ " 1= i), fori= 0,1 (2.34)

The functions go(r) and gi (r) are equal when r= 0.
@(0)= g(0)= 1. (2. 35)
Since pos< pu1,
we have
@ (r)= (1= )+ re’+ po [(1- r) B+
rEe T (1— )—re " (1= rp re '+
pi (1= P E" % rEe "2 (1= p)- e =
gi(r),= 0 (2. 36)
Furthermore, we have
@' (0)= E((Yi— M)l Io=

<1l (237

and
@ (0)= E((vi- M)l 1= 0) < 1. (2.38)
Which indicates that the function go(r) and g1 (r)
cross the straight line with slope 1 at another point
greater than 1 and by formulae (2. 36), this crossing
point is first obtained by go(r). Consequently, we get
R= Ro.
Theorem 2. 3 If there exist Ro, Ri> 0 satisfying
formulae( 1. 7) and formulae( 1. 8) respectively, then
Guangxi Sciences, Vol. 15 No. 3, August 2008



fus e ™,
where R = R and u=€ {0, 1, 2,-- }.

Proof We first prove that {e UL kE N }
corresponds to a supermarting ale.
Letting Yi-1= (Yi= yi,-, Yi-1= p-1), it

(2. 39)

follows that Yi-1 summarize all relevant information
about the surplus process during the £ — 1 first
periods: We have

Ee " %l Io= i, Ve 1)= K¢
Yei)= e X U B(e X G| o= i, Vi 1)=
¢ " e [di(e "] Io= 0, Vi )+
(1= d) E(é%| fo= i, %i-1)]= € ® Y1 [dE(e 70|
Lioi= i)+ (1= EEH] o= i) ].

Since R = Ri,we have

[dE(e_R* 2| = D+ (1-d) E(eﬁ Y =
=1,
and from formulae( 2. 36) , we obtain that

dE(e X W o= 0 (1= dE( ] 1=
05 dE(e X % o= 1w (1= d) (S el pei=
= L
Then, it follows that

E(e”™ % o= i,V 1)= ¢ © V| [dE(e" |
L= i) (1= E@EH ko= a3 e Ve,

From the Kolmogorov s inequality for positive

R (U_+7%-Y,) .
et A s g,

supermartingales, one can find that

P(&r{r&a}%){e—ﬁ Yl = i< et LuE (0,1,

Since

Wul io)= P(,_ in (U} <0 Io= o)<
P max {¢ %= 1) I= i< e " ",

From formulae( 2. 40), the nonconditional ruin

probability must satisfy the follow ing inequality
Jw)= (1= g) ] (ul Op gl (ul = e ™"
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