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Abstract ; Dynamics of the following difference equation will be investigated : z,4, = (¢ + Bz, +
Bz, ; + ** + By Zpos_1)/(A~+ Box, + B,x,_, + *+ + By, ) sn = 0,1, the nature of the

soultion of the difference equation will be investigated in four cases.
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1 Introduction

In Reference [ 1], the following difference
equation was investigated ,

Znti e + Bz, + Bgis ot fe

By 1Zn-2-1)/ (A + Box, + Byx,—y + *** + BuZu—u)»

n= 0,1, - Gl 1D

where % is a non-negative integer,the parameters a, A,

B,,i = 0,1,2,-,2k + 1 are non-negative real

numbers, the initial conditions Z _,—1sZ_p4s*** s T 15T
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are arbitrary non-negative real numbers such that the

denominator of Equation (1. 1) is never zero,and pg
k+1 k

> By,

i=0

> 0 ,whereq = ZBZ,_l s =
i=1

In certain conditions, Equation (1. 1) exhibits
the following period-two trichotomy characters.

(1)Every solution of Equation (1. 1) has a finite
limit if and only if g < A.

(2)Every solution of Equation (1. 1) converges to
a period-two solution of Equation (1. 1) if and only if ¢

"= A,

(3) There exists unbounded solution of Equation
(1. 1) if and only if ¢ > A.

In this paper,the case pg = 0 of Equation (1. 1) is
investigated ,and the following results are established.

Theorem 1.1 Suppose thata™> 0,9 =0,p >0,
A = 0. Then the positive equilibrium x of Equation
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(1. 1) is a non-hyperbolic equilibrium point. If there
exists t € {0,1,2,+**,k} such that B,, > 0 and B,, = 0
foralli € {0,1,2,:+,k} — {t}, then every positive
solution of Equation (1. 1) is a 4¢ + 2 period solution
of Equation(1. 1).

Theorem 1.2 Suppose thata > 0, g = 0, p >
0, A > 0. Then the positive equilibrium point r =
— A+ VAT + dpa

2p

asymptotically stable.

Theorem 1.3 Suppose thata=0,4>0,p =0,
A > 0.

(1)Suppose ¢ > A, then every positive solution of

of Equation (1. 1) is globally

Equation (1. 1) converges to +o°.

(2)Suppose ¢ << A, then every positive solution of
Equation(1. 1) converges to 0.

(3)Suppose ¢ = A and Equation (1. 1) satisfies
the following hypotheses:for every t € {0,1,,7 —
1}, there exist i € X and s € {0,1,*+,k + 1} such
thatt =i — sr ,where X = {i|By_; # 0, = 1,2,+,
k 4+ 1} and » = min X . Then every non-negative
solution of Equation (1. 1) converges to a period-two
solution of Equation (1.1).

Theorem 1.4 Suppose thata>0,9>0,p =0,
A > 0.

(1) Suppose ¢ = A, then every non-negative
solution of Equation (1. 1) converges to +oo.

(2) Suppose ¢ << A, then every non-negative

solution of Equation (1. 1) converges to a f_ L

2 Preliminaries

Now some definitions and the known results
which are employed in the investigation are listed.

Let f:J**' —.J be a continuous function, where %
is a non-negative integer and J is an interval of real
numbers. Consider the difference equation
(2.1)
with initial conditions y ;s 4119330 € J. ot

YVn+1 = f(y,,,y,.%l,"',y,.fk),n = (0,1,

y is an equilibrium point of Equation (2. 1) if
F iy ) = y.

We now impose the further restriction that the
S gty s oo yuy) be
differentiable.

function continuously

The linearized equation of Equation (2. 1) about

the equilibrium point y is the linear difference equation
382

Zorr =02,V aiZ, 1+ >+ aZ,—psn=>0,1, **
2..2)
where for eachi = 0,1, ,k

a=2LG50.

The characteristic equation of Equation (2. 2) is
the equation

AL — g At — g A — oo — g, A — a, = 0.

€2..3)

Definition 2. 1"* Let y be an equilibrium point of
Equation (2.1),

(a) yis called locally stable if, for every € > 0 ,
there exists 6 > O such that if y 4,y _4i1s° s y_1,70 €
J and

0
Dy —yl <o,

i=—k
then

|y, — y| <eforalln=>=—k.

(b) yis called locally asymptotically stable if it is
locally stable and if there exists 7 > 0 such that if y_,,
YVet+19°9Y-1:Y0 E‘ J al’ld

0
Dly—yl <7,

i=—k

then
lim_ Vo = Y.

(c) yis called a global attractor if ,for every y_,,
Vert1s* s Y¥—1:Y0 € J, we have

e

(d) yis called globally asymptotically stable if it is
locally stable and a global attractor.

(e) y is called hyperbolic if no root of Equation
(2. 3)has modulus equal to one. Otherwise it is called
non-hyperbolic.

The following result is useful in determining the
local stability character of the equilibrium point y of
Equation (2. 1).

Theorem 2. 1
Theorem ) ]

If every root of Equation (2. 3) has absolute value

(The Linearized Stability

less than one,then the equilibrium point y of Equation
(2.1) is locally asymptotically stable.
Theorem 2. 2(Clark’s Theorem )"’

Assume that

k
Z |ai| <1,
i=0

then every root of Equation (2. 3) has absolute value
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less than one.
3 The proof of main results

Suppose that a > 0, = 0,p > 0,A = 0. Then

the equilibrium point of Equation (1.1) isx = ,/ %.
Suppose that £ > 0 is the equilibrium point of

Equation (1. 1). The linearized equation of Equation

(1. 1) with respect to x is

Zos 5 (BiZu+ BiZyes =+ BuZo-w) =0,
with characteristic equation

e 4 %(BOA“*‘ + ByA%1 4 e 4 Byd) = 0.

(3.1
Proof of theorem 1.1 It is easy to see that —1
is one root of Equation (3. 1). Hence the positive
equilibrium x of Equation (1. 1) is a non-hyperbolic
equilibrium point.
Now ,suppose that there existst € {0,1,2,+*,k}
such that By, > 0and By, = O for alli € {0,1,2,,k}
— At}

Equation(1. 1) ,then

a a
B~ 2 Tntutz = .
Bz, o Bz,

Let {x,});= ., be a positive solution of

L1 =
It follows that

Lopurs = Tug Tor all m = 0,1, 2%,
namely, {x,},= 1 is a 4 + 2 period solution of
equation (1. 1). The proof of Theorem 1. 1 is
completed.

Suppose that @ > 0,qg = 0,p > 0,A > 0. Then
the equilibrium point of Equation (1. 1) are the
positive solution of the equation

pxt + Ax — a= 0.

Suppose that £ > 0 is the equilibrium point of
Equation (1. 1). The linearized equation of Equation

(1. 1) with respect to x is
Zo1 + (BoZy + BoZy gt 252w}
BZIeZ»—~2k) =0,

T

A+ px

with characteristic equation
Z

ARFE 4 AT P;(BO/V”“ = ByAtt 1 o men
ByA) = 0. (3:2)

Proof of theorem 1.2 By Theorems 2. 1,2. 2
and Equation (3. 2), it is easy to see that x > 0 is
locally asymptotically stable equilibrium point of

Equation (1. 1).
FEAE 2007511 A FU4EF LM

Let {x,};= _,_, be a positive solution of Equation

(1. 1). It is obvious that
a
max {Z,x_zux_ml,---,Ll,xo}

is its upper bounded. Set

I = liminf x, and S = limsup z,,

n—=>co n—>oo

from Equation (1. 1) we can get

S<ﬁp[<1<5.
Hence
I1=3S,
and
|_ s —At AT
4

The proof of Theorem 1. 2 is completed.
(1) Suppose ¢ > A.

Let {x,}s= ., be a positive solution of Equation(1. 1)

Proof of theorem 1. 3

and set

m = MIN{Z_p 1T _py*** s T 19T} 7 = %,
then
= (Bix_ + Bsx_3+ ** + Byp12_u-1) /A=

q_m =
i rm,
Ty = (BlIo = B31'-z e sz+1-1'—2k)/A >
M _
a rm,
Zoptry = (Byxy + Bsxpp—y + ** + Buyp1x0) /A=
M _
Y Sl rm,
Zouys = (BiZpyy + Baxgy—y + o+ + th+111)/
M
>y
A= = rim,
Tig+ny = Bixuss + Baxyy + o +
M
Y
By Zars)/ A= A =

It follows by induction that for allz = 1, we have
Lo DG+ 1D+1 9 T2— D Gt D237 s Lonchs 1y = 7M.
" Note that » > 1, we have

limz, = oo,

n—»oco

and the proof is completed.
(2) Let {x,},=_ ., be a positive solution of
Equation (1.1) and set
M = aR T jiey s " 5L —yv Lo »
then
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= Biz_y +Byx_3+ +* + Bup1xz_u-1)/ A
M
A

It follows by induction that for allz == 1 ,we have

<M.

z, < M. Set I = liminf x, and S = limsupx,.

n—-oco n—»oco

By Equation (1. 1) we have
s<Zs,

i
a A)S<O.

Since
g <A,
we have S = 0. Hence
-k
and the proof is completed.
(3) Let {x,};=_s_, be a positive solution of
Equation (1. 1) and set
M= Tax{ T 1y T e i 0T s
then
z, = (ByzLi+ Bsz_3+ +* + BuygiZom—i WAL

M _
=M.

It follows by induction that for alln—=>1 ,we have x, <

M. Set liminfz,, = m, and y, = z,, — m for alln = —

ky, —k+1,+, —1,0,1,-. It is obvious that
lirginfy,, =0
and
Yut1 = (B1ya + Bsyuo1 + *** + Bug1¥a—s)/ Asn
=i sy T g
Suppose
bk
Note jthat
Ym+1 = (Blym} o = B3yml—l = e 4 th+1ym,—k)/
A,j= 0,1,
and
B, _,7# 0foralli € X,
we have
;IEPO St = 0forall: € X. e

It follows by induction that

l_imyml_+1_.'—mr =0 (3. 3)

for all] { € X and all m = 0.
Suppose that
liToy gl =
we al;o suppose, without loss generality,that «; << m;
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—k—1forall j =0.For j =0 ,suppose u; — m; = —
njr —t;, wheren;, > 0andt; € {0,1,-,r — 1}.

By hypothesis we know that there exist 7; € X
and 5; € {0,1,**,k + 1} such that ¢; = ¢; — s;7,
consequently ; +1=m; +1—¢; — (n; — s;)r for all
j =0.

Note that n; = s, for all j = 0, by Equation(3. 3)

we get

Jlifgyul+1 = }Lrgym}+l—i)—(nj—sl)r = 0.
Hence

limy, = 0,

xvoo
and

limz,, = m.
n—>oco

Similarly , there exists an M ,such that

lim z,,,, = M,
=

and the proof is completed.

The 'proof of Theorem 1. 3 is completed.
(1) ¢ = A. Let
{x,}nz_%—1 be a non-negative solution of Equation
(1. 1) ,then

rn=(a+Bx_+ Byx_3+ ** + By 1x_p0—1)/

Proof of theorem 1. 4

=
V
N

£ ]

z; = (a+ Byxy + Byx_, + *** + Buy1x_2)/
a

A)K’

Zoyr = (@ + Bixy + Byxp—y + *** + But120)/

A=,
Tury = (a + Bixyy, + Byxy, + o0 +
Bypx))/ A= 2 %,

Zyary = (@ + Bixuys + Bixyy, + o +

a
Boprixais)/ A= 2 Aa
It follows by induction that for alln =1, we have
a
LoD+ D419 T2— DGt 1429 *** s Lontht 1) = N A

Hence we have

limz, = oo,

n—=oo

and the proof is completed.
(2)Set

a
x, _yn+A_q9n— (0% PLLLIN
from Theorem 1. 3 (2) we know that {y,};Z .
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converges to 0,hence {z,};= -, converges to T

The proof of Theorem 1. 4 is completed.
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