於₀-Weak Base and Related Matters* 於₀-弱基及相关问题

CHEN Hai-yan, WANG Pei, LIU Shi-qin, ZHENG Ding-wei 陈海燕,王 培,刘士琴,郑顶伟

(College of Mathematics and Information Science, Guangxi University, Nanning, Guangxi, 530004, China)

(广西大学数学与信息科学学院,广西南宁 530004)

Abstract: It is proved that the followings are equivalent for a space X: (1) X has a σ -discrete \S_0 -weak base; (2) X has a σ -locally finite \S_0 -weak base; (3) X is a \S_0 -weakly first-countable and \S -space, space with \S_0 -weak base is open, closed hereditary, and point-countable \S_0 -weak base is cs^{*}-network. Some relations are discussed among \S_0 -weak base, sn-network, cs-network and cs^{*}-network.

Key words: 公₀-weak base, 公-space, sn-metric space, sn-first countable, cs*-network, cs-network **摘要**:证明在空间 *X* 中下列论述等价:(1)*X* 有 σ- 离散的公₀-弱基;(2) *X* 有 σ- 局部有限的公₀-弱基;(3) *X* 是公₀-弱第一可数的公空间, S₀-弱基是开、闭遗传的, 点可数公₀-弱基是 cs*-网.并讨论S₀-弱基, sn-网, cs-网以及 cs*- 网的关系.

关键词:於。-弱基 於-空间 sn-度量空间 sn-第一可数 cs*-网 cs-网 中图法分类号:O189.1 文献标识码:A 文章编号:1005-9164(2007)04-0354-03

1 Definitions and preliminaries

The concept of weak base was introduced by Arhangel'skill^[1]. R. Sirois-Dumais^[2] defined \aleph_0 -weak base. From their definitions it is easy to get weak base that is an \aleph_0 -weak base. but \aleph_0 -weak base may not be weak base. C. Liu and S. Lin^[3]characterized a space X is a quotient, countable-to-one image of a metric space if and only if X has a point-countable \aleph_0 -weak base. It is natural to ask whether there are any others characterizations about \aleph_0 -weak base.

In this paper, all spaces are regular T_1 , all maps are continuous and onto, and **N** is the set of positive integer numbers, the sequence $\{x_n: n \in \mathbf{N}\}$, the sequence $\{P_n: n \in \mathbf{N}\}$ of subsets and the sequence $\{\mathscr{P}_n:n\in\mathbb{N}\}\$ of collections of subsets are abbreviated to $\{x_n\}$, $\{P_n\}$ and $\{\mathscr{P}_n\}\$ respectively. For terms which are not defined here, please refer to Reference[3] and related references.

Definition 1. $\mathbf{1}^{[3]}$ Let \mathscr{B} be a family of subsets of a space $X \cdot \mathscr{B}$ is said to be an \mathfrak{B}_0 -weak base for X if $\mathscr{B} = \bigcup \{ \mathscr{B}_x(n) : x \in X, n \in \mathbb{N} \}$ satisfies

(1)For each $x \in X, n \in \mathbb{N}, \mathscr{B}_x(n)$ is closed under finite intersections and $x \in \bigcap \mathscr{B}_x(n)$.

(2) A subset U of X is open if and only if

whenever $x \in U$ and $n \in \mathbb{N}$, there exists a $B_x(n) \in \mathscr{B}_x$ (n) such that $B_x(n) \in U$.

X is called \mathfrak{B}_0 -weakly first-countable or weakly quasi-first-countable in the sense of Sirois-Dumais^[2] if X has \mathfrak{B}_0 -weak base $\mathscr{B} = \bigcup \mathscr{B}_x(n) : x \in X, n \in \mathbb{N}$ }, $\mathscr{B}_x(n)$ is countable for any $x \in X, n \in \mathbb{N}$.

Definition 1. $2^{[4]}$ Let X be a space, $P \subset X$ is called a sequential neighbourhood of x in X, if each sequence converging to x in X is eventually in P.

Definition 1.3 Let $f: X \to Y$ be a closed map if each closed subset F of X, then f(F) is closed in Y.

Guangxi Sciences, Vol. 14 No. 4, November 2007

收稿日期:2007-06-21

修回日期:2007-07-25

作者简介:陈海燕(1958-),女,教授,主要从事一般拓扑学的研究工作。

^{*} Supported by the Natural Science Foundation of Guangxi (No. 0728035).

Definition 1.4 Let \mathscr{P} be a cover of X, Then \mathscr{P} is called a k-network for X if for any compact set K and for any open set U such that $K \subset \bigcup \mathscr{P}' \subset U$ for some finite $\mathscr{P}' \subset \mathscr{P}$.

2 Main results

In this section, we give a characterization about \mathfrak{R}_0 -weak base, and some related results.

Lemma 2. $1^{[2]}$ Every \mathfrak{B}_0 -weakly first-countable space is sequential.

Lemma 2. $2^{[3]}$ X has a point-countable \mathfrak{H}_0 weak base $\mathscr{B} = \bigcup \{ \mathscr{B}_x(n) : x \in X, n \in \mathbb{N} \}$. L be a sequence converging to $x \notin L$ in X. Then there exists a subsequence L' of L and $n_0 \in \mathbb{N}$ such that L' is eventually in $B_x(n_o, m)$ for any $m \in \mathbb{N}$.

Lemma 2.3 \mathscr{B} is a point-countable \mathfrak{H}_0 -weak base, then \mathscr{B} is a cs^{*}-network.

Proof Let $\mathscr{B} = \bigcup \{\mathscr{B}_x(n) : x \in X, n \in \mathbb{N}\}$ is a \mathfrak{S}_0 -weak base for X, here each $\mathscr{B}_x(n) = \{B_x(n,m) : m \in \mathbb{N}\}$ with $B_x(n,m+1) \subset B_x(n,m)$ for each $m \in \mathbb{N}$. Then Let L be a sequence converging to x in X and U is an open set of $X, L \subset U$ and $x \in U$. By the Lemma 2.2, there exists a subsequence L' of L and $n_0 \in \mathbb{N}$ such that L' eventually in $B_x(n_0,m)$ for any $m \in \mathbb{N}$. From the definition 1.1, we know that there exists $m_0 \in \mathbb{N}$ such that $B_x(n_0,m_0) \subset U$. So the \mathscr{B} is a cs^{*}-network.

Theorem 2.4 Let $\mathscr{B} = \bigcup \{\mathscr{B}_x(n) : x \in X, n \in \mathbb{N}\}$ be an \S_0 -weak base of a space X and A a closed subset of X. Then $\{A \cap B : B \in \mathscr{B}\}$ is an \S_0 -weak base of A.

Proof For $x \in A$. It is easy to see that $\{A \cap B: B \in \mathcal{B}\}$ is closed under finite intersections and $x \in (\bigcap \mathcal{B}_x(n)) \cap A$.

If U is open in A, there is an open set V of X such that $U = V \cap A$. For $x \in U$, there is a $B \in \mathscr{B}_x(n)$ such that $x \in B \subset V$. $x \in B \cap A \in \{B \cap A : B \in \mathscr{B}_x$ $(n)\}$. If for each $x \in U$, there exists a $B \cap A \in \{B \cap A : B \in \mathscr{B}_x(n)\}$ such that $x \in B \cap A \subset U$. We prove that U is open in A. For $x \in V = X \setminus (A \setminus U)$. If $x \in (X \setminus A)$, since A is closed, there is a $B \in \mathscr{B}_x(n)$ such that $B \subset V$. If $x \in U$, there is a $B \cap A \in \{B \cap A : B \in \mathscr{B}_x(n)\}$ such that $x \in B \cap A \subset U$, it means that $B \in \mathscr{B}_x(n)$ and $B \subset V$. Hence V is open in X, therefore $U = V \cap A$ is open in A.

广西科学 2007年11月 第14卷第4期

Theorem 2.5 Let $\mathscr{B} = \bigcup \{\mathscr{B}_x(n) : x \in X, n \in \mathbb{N}\}$ be an \mathfrak{H}_0 -weak base of a space X and A an open subset of X. Then $\{A \cap B : B \in \mathscr{B}\}$ is an \mathfrak{H}_0 -weak base of A.

Proof This proof is similar to Theorem 2.4.

From Theorems 2.4 and 2.5, it is easy to get \mathfrak{B}_0 -weak base is open, closed hereditary.

Lemma 2. $6^{[5]}$ Let \mathscr{P} be a σ -hereditarily closure-preserving collection of subsets of a space X. If \mathscr{P} is a cs^{*}-network, then \mathscr{P} is a k-network of X.

Theorem 2.7 The following are equivalent for a space *X*.

(1) X has a σ -discrete \Re_0 -weak base;

(2) X has a σ -locally finite \Re_0 -weak base;

(3) X is a \mathfrak{B}_0 -weakly first-countable and \mathfrak{B} -space.

Proof $(1) \rightarrow (2)$ obviously.

We prove that $(2) \rightarrow (3)$. Let \mathscr{B} be a σ -locally finite \mathfrak{S}_0 -weak base, then \mathscr{B} is a point-countable \mathfrak{S}_0 weak base, X is a \mathfrak{S}_0 -weakly first-countable space, from Lemma 2. 3, \mathscr{B} is a cs^{*}-network. \mathscr{B} be a σ locally finite \mathfrak{S}_0 -weak base, then \mathscr{B} is a σ -hereditarily closure-preserving point-countable \mathfrak{S}_0 -weak base. From Lemma 2.6 X has σ -hereditarily closurepreserving k-network. So X is a \mathfrak{S} -space.

Now we prove $(3) \rightarrow (1)$.

Since X is an \S -space, by Theorem 4 in [6], we can assume that X has a σ -discrete cs-network \mathscr{P} , where \mathscr{P} is closed under finite intersections. Let $\bigcup \{\mathscr{B}_x(n):$ $x \in X, n \in \mathbb{N}\}$ be an \S_0 -weak base of X, then for each $x \in X, n \in \mathbb{N}, \mathscr{B}_x(n)$ is countable, here each $\mathscr{B}_x(n)$ $= \{B_x(n,m): m \in \mathbb{N}\}$ with $B_x(n,m+1) \subset B_x(n,m)$ for each $m \in \mathbb{N}$. For each $n \in \mathbb{N}$, let $\mathscr{P}_x(n) = \{P \in \mathscr{P}:$ $B_x(n,m) \subset P$ for some $m \in \mathbb{N}\}$. Then $\mathscr{P}_x(n)$ is closed under finite intersections. $\bigcup \{\mathscr{P}_x(n): x \in X, n \in \mathbb{N}\}$ is an σ -discrete collection.

 $\mathscr{P}_x(n)$ is a network of x in X. Suppose not, there is a neighbourhood U of x in X such that $P \not\subset U$ for each $P \in \mathscr{P}_x(n)$. Let $P \in \mathscr{P}: x \in P \subset U$ = $\{P_k: k \in$ **N**}. Then $B(n,m) \not\subset P_k$ for any $m, k \in$ **N**. Pick $x_{mk} \in$ $B(n,m) \setminus P_k$ for each $m \ge k$. Let $y_i = x_{mk}$, where i = k+ m(m-1)/2. Then the sequence y_i converges to x in X because $\{B_x(n,m): m \in \mathbf{N}\}$ is a decreasing network of x in X. Since \mathscr{P} is a cs-network of X, there exists $k, j \in \mathbf{N}$ such that $\{y_i: i \ge j\} \subset P_k$. Pick $i \ge j$ such 355 that $y_i = x_{mk}$ for some $m \ge k$, then $x_{mk} \in P_k$, a contradiction.

Put $\mathscr{B} = \bigcup \{P_x(n) : x \in X, n \in \mathbb{N}\}$. We shall prove that \mathscr{B} is an \mathfrak{H}_0 -weak base. We only need to prove that a subset V of X is open if whenever $x \in V, n \in \mathbb{N}$, there exists a $P_x(n) \in \mathscr{P}_x(n)$ such that $P_x(n) \subset V$. If V is not open in X, from Lemma2. 1, we know V is not sequentially open. There is a sequence L in $X \setminus V$ converging to a point $x \in V$. By the claim in Lemma 2. 2, there exists a subsequence L' of L and $n_0 \in \mathbb{N}$ such that L' is eventually in $B_x(n_0,m)$ for any $m \in \mathbb{N}$. But $B_x(n_0,m) \subset P_x(n_0)$ for some $m \in \mathbb{N}$, L' is eventually in $P_x(n_0) \subset V$, a contradiction. So \mathscr{B} is an \mathfrak{H}_0 -weak base for X.

. From Theorem 2. 7, it is natural to ask the following question:

Question 2.8 Is a space X with σ -hereditarily closure-preserving \mathfrak{B}_0 -weak base \mathfrak{B}_0 -weakly first-countable space and \mathfrak{B} -space?

This question can be partially answered if X has σ -hereditarily closure-preserving point-countable \Re_0 -weak base, then X is a \Re_0 -weakly first-countable space and \Re -space.

Lemma 2. $9^{[7]}$ Let $f: X \to Y$ be a closed map and X has σ -hereditarily closure-preserving k-network, then Y is sn-metric space if and only if Y is sn-first countable space.

Theorem 2.10 Let $f: X \to Y$ be a closed map and X has σ -hereditarily closure-preserving pointcountable \mathfrak{R}_0 -weak base, then Y is sn-metric space if and only if Y is sn-first countable space.

Proof If Y is sn-metric space, Y is sn-first countable space.

If X has σ -hereditarily closure-preserving pointcountable \mathfrak{S}_0 -weak base \mathscr{B} From Lemma 2.3, we get that \mathscr{B} is a cs^{*}-network. From Lemma 2.6, X has σ hereditarily closure-preserving k-network. From Lemma 2.9, it is easy to get Y is an sn-metric space.

Corollary 2.11 A space X with σ -

hereditarily closure-preserving point-countable \mathfrak{H}_0 -weak base, then X is a sn-metric space if and only if X is a sn-first countable space.

Corollary 2.12 A space X with σ -hereditarily closure-preserving point-countable \mathfrak{B}_0 -weak base, then X is an \mathfrak{B} -space if and only if X contains no closed copy of S_{ω_1} .

In the following, we will give some remarks on \mathfrak{R}_0 -weak base, sn-network, cs^{*}-network, cs-network.

Remark 2. 13 The \S_0 -weak base may not be sn-network. If not, point-countable \S_0 -weak base is point-countable sn-network. The point-countable \S_0 weak base space is sequential space, then the pointcountable sn-network is point-countable weak base. This is not true.

Remark 2. 14 The $\$_0$ -weak base may not be cs-network. Every quotient, finite-to-one image of a locally compact metric space does not have a pointcountable cs-network^[8]. But C. Liu and S. Lin proved that it had point-countable $\$_0$ -weak base^[3].

Acknowledgement:

The author would like to thank Zhang-yong Cai for his suggestion of proving of Theorem 2.7.

References:

- ARHANGEL'SKILL A. Mapping and spaces[J]. Russian Math Surveys, 1966, 21:115-162.
- [2] SIROIS-DUMAIS R. Quasi-and weakly quasi-firstcountable spaces [J]. Topology Appl, 1980, 11 (3): 223-230.
- [3] LIU C,LIN S. On countable-to-one maps[J]. Topology Appl,2006:1-6.
- [4] LIN S. Sequence-covering maps of metric spaces[J]. Topology Appl,2000,109(3):301-314.
- [5] LIN S. Generalized metric spaces and mapping[M].Beijing: Chinese Science Press, 1995.
- [6] FOGED L. Characterizations of S -space[J]. Pacific J Math, 1984, 110: 59-63.
- [7] GE Y. Sn-metric space[J]. Acta Math Sinica, 2002, 45: 355-360.
- [8] LIN S, YOSHIO TANAKA. Point-countable knetworks, closed maps, and related results [J]. Topology Appl, 1994, 59:79-86.

(责任编辑:邓大玉 蒋汉明)