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Abstract ; It is proved that any contraction critical 5-connected graph on n vertices has at least n + 1

trivially non-contractible edges.
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1 Introduction

We only consider finite and simple graphs.
Basically we follow the terminology of Reference [1].
Let G = (V,E) be a graph with vertex set V and the
edge set E. For a vertex £ € V, we denote the
neighbourhood of by N(z), which is the set of
vertices adjacent to z.d(x) = |N(x)| denotes the
degree of z. E(x) denotes the set of the edges incident
with z. For a nonempty set F & V, let N(F) =
(User N(@)) — Fand F =V — (F U N(F)). The
set F or the subgraph induced by F is called a fragment
of Gif F % ¢and |[N(F)| = «(G), where ¥(G)
denotes the connectivity number of G. We also call F a
N(F) -fragment. For the subsets S and 7" of V', we
denote by E(S,T) the set of edges between S and T'. If
S = {z}, then we simply write E(x,T) instead of
E({x},T). For a connected graph G, a subset S &
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V(G) is said to be a cut-set of G, if G — S is not
connected. A cut-set S is called a & -cut-set if |S| = 4.

Let G be a k-connected non-complete graph
(where £ == 2), an edge of G is called % -contractible if
its contraction results still in a & -connected graph. An
edge that is not k-contractible is called a non-
contractible edge. If G does not have a & -contractible
edge,then G is called contraction critical 2 -connected.
It is easy to see that a %-connected graph G is
contraction critical if and only if for each edge e = xy
of G,G has a k-cut-set containing {z,y}. If the
contraction of e € E results in a graph with minimum
degree %k — 1, then e is called trivially non-
contractible. In other words, e is trivially non-
contractible if and only if the two end vertices of e have
a common neighbour of degree &.

In 1961, Tuttet” proved that any 3-connected
graph with order at least 5 had a 3-contractible edge.
On the other hand, Thomassen™ showed that for 2 =
4 there were infinitely many % -connected k -regular
graphs in which there was no a & -contractible edge.
So it is nature to study the structure of contraction

critical £ -connected graphs. The contraction critical 4-
[4]

- connected graphs were characterized by Martinov-*,
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which are two special classes of 4-regular graphs. For
k == 5, the characterization for the contraction critical
k -connected graphs seems to be very hard. In general,
Egawa'®l showed that every contraction critical

k -connected graph had a vertex of degree at most
[szk] — 1. By Egawa's result, the minimum degree of
a contraction critical 5-connected graph is 5. In this
direction, more results have been obtained.

Theorem 157

5-connected graph. Then each vertex of G has a

Let G be a contraction critical

neighbour of degree 5, and thus G has at least |G|/5
vertices of degree 5.

Sut® proved the results that any vertex of a
contraction critical 5-connected graph G had at least
two neighbours of degree 5, and thus G had at least
2|G| /5 vertices of degree 5. The number 'two’ is the
best possible shown in Reference [9].

Thomassen™

proved that any contraction critical
k -connected graph contained one triangle. Mader'"
obtained that every contraction critical £ -connected
graph G contained at least |G| /3 triangles. Recently,
Kriesell' further improved Mader’s result to that a
contraction critical 4~ connected graph G contained at
least 2|G | /3 triangles.
\ From these results, we may expect that a
contraction critical 5-connected graph has many
trivially non-contractible edges. Motivated by this,
Ando™? considered the distribution of the trivially
non-contractible edges in a contraction critical
5-connected graph and proved the following results.
Theorem 2"

5-connected graph G has least |G|/2 trivially non-

Any contraction critical

contractible edges.

Ando guessed that the lower bound of Theorem 2
can be improved to |G|, and even to 2|G|, and he
proposed his problem in the China-Japan Joint
Conference on Discrete Geometry, Combinatorics and
Graph Theory (2005). Here we prove the following
result.

Theorem 3 Any contraction critical 5-connected
graph G has at least |G| -+ 1 trivially non-contractible
edges.

2 Proof of Theorem 3

In this section, we will prove Theorem 3. Before
12

that we state some lemmas. For the fragments, we
have the following properties.‘ G

Lemma 1°°7 Let F and F' be two distinct
fragments of G, T = N(F),T' = N(F').

(DEFNF #£¢,then |[FNT' | =|F NT|,
[FENVE| = b ek ‘

(DU F N F #¢#F () F, then both F N F'
and F (N F" are fragments of G, and N(F N F') = (T
NTHUTNFYUENT),NFNF)H=(TN
TO A O F LG R T

Lemma 27 Let G be a contraction critical
5-connected graph and F a fragment of G. If w €
N(F),N(w) N N(F) # ¢and | F| = 2, then N (w)
N (F U N(F)) contains a vertex of degree 5.

Lemma 3" Let G be a contraction critical
5-connected graph and A a fragment of cardinality 2 in
G. If N(A) has two vertices = % y such that | N(x) N
A| = |[N(y) N A| = 1, then one of z,y has a
neighbour of degree 5 in N(A) — {z,y}.

In the following, we always assume that G is a
contraction critical 5-connected graph. Let E* denote
the set of the trivially non-contractible edges of G, and
let Blz)i="|ECz)- [ E* | Denbte Vst = {ov €
V(G)|d(v) = 5}.

LetT = {a;,a,,x,y,2} be a 5-cut-set of G,A =
{#,v} a component of G — T such that {u,v,2z} &
Ve (GGl AT = Ky NCuw) =Hais@yy Bazy o s N(v)i=
{a;sa,,2,y,u},yz € E,yx € E, there may exist other
edges among the vertices of 7. We call the induced
subgraph G[V(A) U T] a K,- configuration with
centre .

Proposition 1 Let = be a vertex of G such that
Bl 1y or:Bla) i=i2=and | EC2)o Fl- E % 'bein a
triangle,then G has a K,- configuration with centre .

Proof Since 8(zx) < 1or B(x) = 2and E(x) )
E” be in a triangle,for any fragment A with x € N (A)
we have that E(z,A) N E' = ¢orE(z,A) N E" =
. We consider the fragments A such that N(A)
contains an edge of E(x) — E* and E(x,A) | E* =
#, among them we choose A such that |A]| is
minimum. As N (A) contains an edge of E(x) — E”,
so |A| =2and | A] = 2.

Claim1 |A| = 2.

Proof We only need to prove that |A| <C 2. Let
u€ N(x) ) A, thenau € E(xz) — E*. Let Sbe a
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5-cut-set containing {x,u},B a S -fragment of G.
Since zu is an element of E(z) — E*, then |B| = 2,
| Bl = 2. Let T = N(A).

We first assume A | B# ¢. f A | B # ¢, by
Lemma 1(2) and A (| B # ¢ ,we get A (| Bis a
fragment,note A (| B is a fragment such that 7" : =
NANB=@ANSHSUSESNDUBNOND
contains an element of E(x) — E* and E(x,A () B) N
E* = ¢. Further more, u € AN S,|AN B| < |A4]
— |AN S| < |A| — 1, which contradicts the choice
of fragment A, so A (1 B = ¢and A () Bisn’t a
fragment, thus [(ANSH U S NTHOUBNT)| =
6. If A B # ¢, arguing similarly ,we can obtain AN
B=¢ Thus | ANS|=]A|=2. Since |(ANS)
USNDDOUBNT=6,IS|=[ANS U S
NT)U@NS)| =5,wehave | BNT|=]4AN
S)| +1=3.| BN T| = 3follows similarly ,note x €
SONT,thus |T|=|BAT|+ |SNT|+ |BNT|
> 7, a contradiction. SoANB=¢,and | BNT| =
| Bl >2. Thenweget |[ANS|=|BNT)|+1=
3 in the same way. Sincex € S 7T, |S| = 5, then we
have | A N.S| < 1. But we know | A| =>2,s0AN B
# ¢. By Lemma 1(1),weget | ANS| = |TNB|=
2, which contradicts | AN S| < 1. SoA B=¢. By
symmetry, we have A | B = §.

Then we have A (1 B = 0= A | B ,That’s to
say, ACS. If |A| =3, then | AN S|<1. For | A|
= 2, either A (| Bor A [ Bis nonempty. We assume
that A | B # ¢ without loss generality. By Lemma 1
(1),weget | BNT|=|ANS|=3. AN B+#4,
by Lemma 1(1),weget | BNT|=|A NS|=3. We
have |T| = [BNT|+ |ISNT|+ |BNT| =3+
1 4+ 3 = 7, a contradiction. So A | B = ¢, then | B
T|=|B|=2,thus |T|=[BNT|+ISNT|+
| BNT| =341+ 2=6, a contradiction. Then we
have |A| < 2, so |A| = 2. The proof of Claim 1 is
completed.

By Claim 1, we let A = {u,v},T= {a;,a:,2,5>
z},zu,yr € E(x) — E*. First,we claimd(x) = 5. If
d(u) # 5, thend(u) = 6, thus N(u) = {v} UT. UIf
d(v) = 5, then N(v) = {a;,a,,2,y,u}; otherwise,
zu € E* is a trivially non-contractible edge, which
contradicts our assumption E(x,A) | E* = ¢, so
Nx)NANV;=¢ lfd(v) =6, we also have N (x)
N AN Vs =¢. Then by Lemma 2, there exists a
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vertex w € {a,,a,,y,z} and d(w) = 5,zw € E, thus
xu € E(x,A) | E", a contradiction. So we have d («)
— 5, Because xy & E*, we have uy & E, then N(u)
= {a,,a,,x,2,v}). We next claim d(v) = 5. If d(v)
# 5, thend(v) = 6, thuszv € E*, contradicts E(x,

A NE =4
From above,we know |[N(x) N A|] = [N(y) N
A| =1, by Lemma 3,there exists a vertexw € V; )

{a;,a;,2} andw € N(x)orw € N(y). fweE& N(x),
then ux € E* , a contradiction,sow € N (y). Without
loss of generality ,we let w be 2. From above , we obtain
a K,- configuration with centre x, and the proof of
Proposition 1 is completed. ;

Proof of Theorem 3 LetV,= {xz € V(G) |B(x)
<1},V,={z€ V(G)|B(x) =2}, By Proposition 1,
for every x € V,G has a K,- configuration with centre
z. In this K,- configuration, there exists a u, € A )
N(x),N(u,) NV, = {z} and B(«,) = 4. For each =
€ V,, we can find only one «,, thus we define V|, =
{u,|x € V,}. Obviously, |V | = |V,|. Let V, =
VG) — (Vo UV, N Vy). In addition, in this K,-
configuration,there is av, € A — N(z) and B(v,) =
5. So if |V .= O'then |V = 0.

Considering the cardinality of E* , we have 2 |E" |

= Zvev'g(v) S Zvevo‘g(v) + EveV]‘B(v) +
Zuevzﬂ(w + Zvevsﬂ(v) >0+ 4|V,| + 2|V, +

3|Vl = 2|Vo| +2|Vy| + 2|V, | +2|V,| + Vs =
21V(G) | + |V;| =2|V(G)|, thus |[E* | = |G|, the
equality holds only when V; =V = dand f(v) = 2 for
eachv € V.,

Next, we claim that the equality doesn’t hold. If
not, there is a contraction critical 5-connected graph G
with |[E* | = |G|. We can easily to see that |E* | =
|G| if and only if for each v € V,B(v) = 2, thus
locally to see, the structure of every vertex x and E(x)

N E* = {xy,zz} has only following 3 cases:

Case(1) xyz be a triangle with y € V;,2 € V;

Case(2) wuyx and vzx are two edge-disjoint
triangles, 23y & V; and u,v € V;;

Case(3) awy and xwz are two triangles which

have a common edge, w € V;,y & V;,2 & V.

If Case (1) occurs,by Proposition 1, G has a K,-
configuration with center =, thus there is a vertex u €
V,B(u) = 4, a contradiction. Then Case (1) doesn’t
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