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Abstract: This paper investigated a nonlinear integrodifferential equation. The existence of almost

periodic solutions for the equation is obtained.
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1 Introduction

Existence of periodic and almost periodic solutions

for nonlinear differential equations have been
investigated by many authors' ~*). For the qualification
of almost periodic differential equations,one can see in
reference[ 7~ 9. In this paper, we shall extend the
results of reference[1,2] to the following nonlinear
integrodifferential equations. Since periodic system is a
special case of almost periodic system, we also extend

the results of reference[4,5]. Consider the following

system
@) = A, x@)x(@) + Jt C(t,s)x(s)ds +
g, z(t)) + pt), (1)

where — co <s<t#,t € R,z € R". Specially,if A(z,
(@) = A@®) and g(t,x) = g(t), Burton™ and
Huang™ have investigated the existence of periodic

solutions. Under the condition that the system (1) has
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a unique bounded, we shall obtain some result on the
existence of a unique almost periodic solution of system
1.

Throughout this paper, we assume that A(z,
x(¢)) is an X n continuous matrix almost periodic in ¢
uniformly for x,p(#) is a vector continuous almost
periodic function, vector g(¢,z) is almost periodic in ¢
uniformly for z,C(z,s) is a n X n continuous almost
periodic matrix,namely ,for any € > 0 and any compact
set K in R X R, there exists an L = L(&,K) > 0 such
that any interval of length L contains an r for which

|CG + 7,5 + 1) — C(t,s) | < e,t,s € R, (2)
Itz = (xys29>252,)" € R*,A = (a;;)xns We define

Fzll = X l=l Al = 33 > lagl:
i=1

i=1 j=1
2 Main results
For system (1), we impose the following

assumptions ;

(i)For any x ,there exists constants 6 > 0 such

that
n n + oo
a;tsz) + D) lag(t,x)| + j{)j |Ci; (2,
ey : i=1v*
ds<— 8,7 = 1,2, g (3)
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a*)
< n e
—a;(t,2) A D] laglt,x) | + EI IC, (2,
jmp ot

i=1,%]
) ds s — 0 = 1,2,-T-J,n. (4)
(ii) There exists a constant 2(0 < k<) such that
for any x,y € R", we have
|l gtz) — gty | <kllz—y]. (5
(iii) There exists L > 0 such that || g(z,0) +
r@ | <L.
We shall denote the function space consisting of
all translates of f by T'(f) ,that is, f. € T'(f), where
feltyx) = fGt + 7,2),t € R
Let f(t,x) € C(R X D,R") be
almost periodic in # uniformly for x € D, where D is a

Lemma 1

subset in R". Then, for any real sequence h';, there
exists a subsequence 4, of A’ and a continuous function
g(t,x) such that

@4 hyyz) = g(t,2), (6)
uniformly on R X S as £ — oo, where S is any compact
set in D. Moreover, g(¢,x) is also almost periodic in ¢
uniformly for x € D.

Let H(f) denote the uniform closure of 7'(f) in
the sense of Formula (6),namely, g € H(f) means
lim f (¢ + hy,x) = g(t,x) for some sequence A;.

ko0
Lemma 2™ If for any A(z) € H(A),C(t,s) €

H(C) and p(t) € H(p), the equation
2 =A@z + J: C(t,)x(s)ds + pt) (7

has a unique bounded solution on R in a compact set
K, then there is a almost periodic solution of the
following equation

o e AR j_ GessrE )i P (8D

Theorem 1 Suppose that the conditions (i), (ii)
and (iii) are satisfied, then there exists a unique
bounded solution of system (1).

Proof

consider a Liapunov function

Let #(¢) be a solution of system (1),

V)= || =) | = D 1z (9
i=1

then calculate the right derivative of V () we have

n

D* V(&) = > sgn (z;(®)) » 2 () =

i=]
n

ESgn(xi(t))[ ia.-,-(t,x)x,-(t) 2 f Zn]Cij(t,
i=1 T ]

i=]

s)z;(s)ds + g:(t,x) + p(®)] < ay @yx) |2 (@) | +
|a12(tv1')“12(t)| i "'laln(t’l')lll'n(t)l 45

[ lenalasiaml + [ 1Cuws 1dslzw)]
P 5 J_ |Coalts8) [ds |2, | + |gi(tyz)| +
JEAFE 2006511 0 F13EF4M

|21 @) | + oo +an(t,2) |2, | + |a,@,2) | |2, |

Foklas ey fte)] +j (Cuesias st

[leatoisinor + -+ [ 1cu,

9 ds|z, @) | + |g. ) | + 12,0 | < D) [a;(t,2)
=1

+ 2 e+ B[ 16,1z w] +
i=1v 7%

i=1,j%#1

D) lgit,2) — gi,00 | + D) (g, 00| + | @)
i=1

i=1

<=8 |z | +Elz® || +L=— @ —V@©)
i=1

+ L. (10)
Since £ < ¢, therefore, — (& — &) =— ¢ << 0. So we

have

DtV <—cVQk) + L. an
We clain that
Vike). << Lijador t =>.0; (12)

Otherwise, there exists £, > 0 such that
Vi yso LifalO= ¢ << ) Volit,) =1 ]c. (13)
From Formula(11),we have

DEVi) < 0for o< i, (14)
Hence for 0 <<t <t,, we get
V)<V < L/c,0<t <ty (15)

Let t—¢,, we have V(¢,) << L/c. This contradicts with
Formula (13). Since V() =
z(t)(t € R') is bounded. Now consider sequence

|| z(2) || » this means

{t,} st,—>+ coasn—> oo, then {z(¢+¢,) } is uniformly
bounded on R*, and

|2 ¢ 4+ ) |-< sgglA(nx(t))I o |lz@®)| +
supf_ |[C(tys)|ds « slgg)lx(t)l + Slgg)lg(t,x(t))l +

=0

i (16)
which implies that {z(z +¢,} is uniformly bounded and
equicontinuous. It follows from the Ascoli theorem
that, {z(z + ¢,} locally uniformly converges to z on R.
Moreover,

2@ +t)=AC¢+ t,a@t + t,))x@t + ¢,) +
[ ct+ast a6+ 2ds + g6+ 2@+ 1)
+ pt +t,). Gl
Let n > oo, we have

7 (1) = At,z())T®) + I Ct,9)z()ds +

gt,z()) + p@), (18)
that is, z(¢) is a solution of system(1). Since {x(z +

t,} is uniformly bounded, thus z(¢) is bounded for ¢
=—t,. Let n— 0o we have z(¢) is bounded fort € R.
Namely, there is a positive constant M (= L/c) such
that || z() || < M fort € R.
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Now suppose that 2(¢) is a solution of system (1),

consider a Liapunov function

W@ = ||z —z® | = D] |z —z@|.
=1

(19)
Then from the right derivative of W (z) we easily get

D* W) = Disgn(z(t) — z,(1)) » (Z.() —
i=1
@) <— W@, 20)
which implies that 2(¢) = z () for any ¢ € R. Thus,
there is a unique bounded solution in system(1).

Theorem 2 Under the assumptions (i), (ii) and

(iii) , there exists a unique almost periodic solution of

system (1).
Proof Let B = {u(z)|u(t) is almost periodic}.
Define the norm || «(2) || = sgkplu(t) |, then B is a

Banach space. Note that Lamma 2 and Theorem 1 still
hold under the assumptions (i), (ii) and (iii). Thus,
for any u(z) € B,A(t) € H(A),C(t,s) € H(C),
g(t) € H(A),and p(t) € H(p), from Lemma 2 and

Theorem 1,we know that
2@ = AG,u@)z(t) + j Ctis)a(s)ds +
2(t,u@®) + p@), 21)

system (21) admits a unique almost periodic solution
denoted by x,(¢). So we can define operator 7': B— B
as follows::

T.u(t) > z,(t).
Let B, = {u(t);u(t) € B, ||u| <n}, wherenis a
natural number. It is easily from Formula(11) to know

that there exists a natural number N sufficiently large,
for example, N > -f—' -+ 1 such that T': By — By.

Now we show that 7" is a compact operator. For
any sequence u, (¢) satisfying || ,(®) | < N(n=1,2,

+++), since T'u,(t) is the solution of system

2 A e (O)xlt) + f Ctt, )zs)ds

8t u,(2)) + p(2). 22)
We have
() Gl= Sup | A e, () || « || () ||

sup |[C(tys)|dss sup [z || + sup | gz,
|zl <NJ —c0 |z <N |zl <N
@) || + L, (23)

which implies that {7'«,(¢)} is uniformly bounded and
equicontinuous. Thus, 7'By is a compact subset of B ,
namely, 7" is a compact operator. 7' is a continuous
operator. For any u(¢),v(t) € By, it follows from
Formula(10) that

| Tu—To| < % | gtyw) — gltyv) || (24)
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Since g (¢,z) is almost periodic in ¢ uniformly for x, so
g(t,z) is continuous function. This implies that 7" is a
continuous operator. Thus, there exists an almost
periodic solution of system (1) from The Schauder
fixed point theorem. Since almost periodic solution is
bounded and system (1) has a unique bounded
solution, this means that there exists a unique almost
periodic solution of system (1). The proof is
completed.

Remark Similarly, if condition (i) replaced by
(i) " , Theorem 2 still holds.

Example Consider the following scalar equation

x2' () =— (4 + cos t — cosmt)x(t) + %'r (cos

z(t)sin ¢t
1+ e*(@)

Note that cos ¢ — cos 7z is an almost periodic function.

t + cosmt)e T x(s)ds + + sinmnt. (25)

One can verify that the conditions of Theorem 2 are
satisfied. So there exists a unique almost periodic
solution of equation (25).
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