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Abstract : For an undirected , simple graph G,and positive integers a; , ***,a;, we write G—(a, , **,
a)" if and only if for every vertex k-coloring of G,there exists a monochromatic K, ,for some color
i€ {1,+,k}. The vertex Folkman number is defined as F,(a,,***,a;; p) =min {|V(G) |:G—~>(a,,
ya)", K,ZG}for p>max{a,,***,a:}. In this paper,new recurrent inequalities on vertex Folkman
numbers F,(k,k;k + 1) are proved. We also generalize an inequality of Kolev and Nenov on
multicolor Folkman numbers.
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1 Introduction

For an undirected, simple graph G, and positive
integers a, , *++ ,a;, we write G = (a,,+**+,a;)"(G— (a,,
«+,a)°) if and only if for every vertex (edge) k-
coloring of G, there exists a monochromatic K, , for
some color i € {1,+,k}.

For positive integers a,,+**,a, and p > max{a,,
e ga, ) ,let

F, (ay,+
G},

F, (ay,+
G}.

The graphs in F, (a,+**,ai;p) are called vertex

MHP) - {G:G = (aly'"sak)vst (Z

’akip) e {G:G_’ (als'" vak)epr (Z
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Folkman graphs, and the graphs in F, (a,,+**,a:;p)
are called edge Folkman graphs.

In 1970 Folkman'''showed that for all ,/ and p
> max{r,/} the families F, (r,l;p) and F, (r,l;p)
are nonempty. Folkman’ s method worked only for
two colors. Folkman’ s theorem was generalized to
multicolor case in reference [ 2] (also see reference
[3D.

One can ask what is the minimum number of
vertices in a vertex or edge Folkman graph, which
leads to the notion of Folkman numbers.

For positive integers a,,+**,a; and p > max{a,,
-=+,a;} »the vertex (edge) Folkman number is defined
as

F,(a;,ya;3p) = min{|V(G)|.G — (a;,*,
a)’ K, £ G}y

F.(a,,*,a;3p) = min{|V(G)|:G — (a,,* -,
a), K, C G}.

Among all vertex Folkman numbers, F,(k,k;k +
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1) and F,(3,k;k + 1) seem more interesting for many
researchers. In this paper we will discuss the upper
bounds for them.

In reference [4] it was proved that

Theorem 1 For p no less than 3,we have

F,(kyksk + 1) < [kle] — 2.

In reference [ 5], the following corollary was
proved.

Corollary 1 F,(k,ksk+ 1) <<[2k1(e—1)] —

Theorem 1 in reference [ 4 | was proved earlier
than corollary 1. Reference [4] was in Russian and
was not well known.

In reference [ 6], the following theorem and
corollary were given.

Theorem 2 For all integer p no less than 2, we
have

Fp+1p+ 10+ 2 (p+ DF (P, 050+
128

Corollary 2 For integer p no less than 4, we
have

F,(p,psp+ 1) < 1. 46p].

In section 2 we will improve theorem 2 above,
based on what we can get new upper bounds better
than those in corollary 2.

The following theorem was proved in reference
(72,

Theorem 3 If p = 3 ,then 2p + 4 << F,(3,p;p
+1<4p+2

New upper bounds F,(3,5;6) << 22,F,(3,6;7)
< 26 and F,(3,7;8) << 30 were gotten in reference
[7]. They were used in corollary 3 on F,(3,p;p+ 1).

The following theorem was proved in reference
[8].

Theorem 4 Let a; << **+ << a,,7 > 2 be positive
integers and a, = b, + -+ + b, , where b, are positive

integers too and b, > a,_,,i = 1,***,s. Then

Fo(a, a8, + 1) < D F(ayy e ya,1,b:3b,
i=1
+1.

Base on this theorem, the following result was
proved in reference [8].

Letp=4and p = 4k + [,0 < I < 3, from the
theorem it is easily get that

F. (3, p3p 1) < (B—"1)F,(3:435) = F.(3 ;4
srilgbist- ).

Then they proved the following corollary (see
reference [8]).
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Corollary 3 If p = 4 then
F(3,psp 1)< %p for p = 0(mod 4);

13555623

F.Gypsp + 1D < 1

4);

F.Gupsp + 1 < BEEZE for 5 = 3(mod
4);

F,(3:p50 7+ 1) <
0.

In section 3 we will generalize theorem 4 above. A

for p = 1(mod

BPTM for p = 3(mod

part of corollary 3 will be improved a little.
2 New upper bound for F,(k,k;k+1)

In this section, we will improve the theorem
above.

Theorem 5 For integer k£ no less than 2, we
have

F,(2k,2k;2k + 1) < kF,(2k — 1,2k — 1;2k) +
3k 11,

Proof Suppose H € F, (2k — 1,2k — 1;2k),
v(H) =F,(2k— 1,2k — 132k) ,V(H) = {v)5°**,9,}.
Fromv(H) =n= F,(2k — 1,2k — 1;2k), we know
there is A C V(H)\{v, } such that both the subgraph
of H induced by A and the subgraph of H induced by B
= VEH)\({v,} U A) are K, , -free. We might
suppose V(A) = {v,,+* "V, }and V(B) = {'u,,]+, yreey,
v, } as well.

Next we will construct a graph G of order £F,(2k

— 1,28 =<132k) "3k 1:
3
Let V(G) = UV (G) and V(G,) = {w,}.
i=1
Let V(G,) = {w;|1 < j < 2k} and E(G,) =
{(wiyw) |1 <1< j < 2k}
k k
For G Vi(Gs)i—= _l;JlV(A,-) U L_J]V(B,-) W {ees B
<i<k U {u(®]1 <i<k},in which for any 7
satisfies 1 < i < %,V (4) = {uz(i),"',u,.l(i)} and
V(B,) e {u,,lﬂ(i),"-,u,,(i)}.
EG;) = {(w, (D) ,u.()) |vo. € E(H),1 i<
S
khiisy<z<n}U UE,
i=1
where
E, = {(u (@) u.(D)) |viw, € E(H) I K<i<k,
n+ 1<z n},
E, = {(u @) ,u. (i +1)) |vv. € E(H),1<i<
k_ 192<z<n1}’
E; = {(u,(B),u., (1)) |vv. € E(H),2< 2<n},
E, = {(u,@) yu.G +D)Ho0. € E(H),1 <i<
Guangxi Sciences, Vol. 13 No. 4,November 2006



k— 1,n +1<y§"’2<z<"1}’

Es = {(uy () yu, (1)) |vyo, € ECH) ym + 1<
YySn2<z<m}.

The set of edges of the graph G is defined by

EG) = UEG) U EG,,G) U EG,,Gy)

where

E(G,,G;) = {(wy,z) |z € V(G,)} and E(G,,

G = (G, w) 1< y<n1 <i<k U UE,
in which
Ei= {(u,w») | 1<i<k—1,u€ B,U Ay, U
{w; (D} },
E, = {(uywy) lu € B, U A U {u (&)} }.
From V(G;) = EQJIV(A,-) U iL:JlV(B.-) U {w @ |
1<i<k) U {u (|1 <i<k} we know that
|V(G3)l =k(|A1| St |Bl|) + k4 A
From |A,| + |B,| = n — 1, we have |V(G;)| =
RC(|A,| + |By|)+Ek+Ek=kn—1) + 2k=Fkn+ k.
So

3
VG| = D) IVG)| =1+ 2k+kn+k=kn
i=1

+ 3k+1.
Fromn = F,(2k — 1,2k — 1;2k) we have

|[V(G)| =kn+ 3k+ 1= FkF,(2k — 1,2k — 1;
28)i 3kl

From the construction of graph G , we can see
that the subgraph induced by G; is K, -free,and any
three vertices in G, have no common neighbors in G; .
If two vertices in G, have common neighbors in G;,
then the subgraph of G induced by their common
neighbors in G; must be K, -free, because it is
isomorphic to the subgraph of H induced by A or B .

From all these we can see G is K, -free.

Now , we give G any red-blue vertex coloring, i.
e. , we color any vertex in G with red or blue. We
might suppose w; is in color red as well.

We will prove G — (2k,2k)". We know the
subgraph of G induced by G, is a complete subgraph on
2k vertices. If there is not monochromatic complete
subgraph on 2k vertices in G , there is at least one
vertex w; in G, is in color blue.

From the construction of graph G we know that
the subgraph of G induced by the common neighbors of
w, and w; are isomorphic to H. So there is not
monochromatic complete subgraph on 2k — 1 vertices
in H, what contradicts with H € F, (2 — 1,2k — 1;
2k). Therefore we have G — (2k,2k)".

JSEMAFE 200651180 H13E5% 4M

Because G is K, -free, G — (2k,2k)" and
|[V(G)| =kF,(2k—1,2k— 1;2k) + 32+ 1 ,we have
F,(2k,2k; 2k + 1) < kF,(2k — 1,2k — 1;2k) +
3k 1.
It is natural to get the following theorem with
similar method.
Theorem 6 Suppose £ is an integer no less than
2, H &€ F,(2k,2k;2k + 1) ,0(H) = F,(2k,2k;2k +
1). Let {v,} C H,A C V(H)\{v},G; be the
subgraph of H induced by A and G, be the subgraph of
H induced by V(H)\({v,} U A). Suppose both G,
and G, are K,; -free. If x is the order of the maximum
isomorphic induced subgraphs of G, and G, , then we
have
Fy(2k 412k + 152k 2) << (R4"1)F,(2k, 2k}
2k 4= 1) = - Sk 2,
In reference [ 9] the following theorem and
corollary were proved.
Theorem 7 Let ayy*yauyby5°*ybispyq be
positive integers,max {a;, **,a;} << p,max{b,, =+ ,b;}
< q, then
F(a\by s aibis pqg + 1) < F(ay, a5+ 1)
o F (s yby3q + 1).
Corollary 4 Let a,b be positive integers no less
than 2, a < p,b << q ,then
F,(ab,ab;pg + 1) < F,(a,a;p + 1)F,(b,b3;q +
1.2
Although corollary 4 is a powerful tool to give
upper bound for F,(k,k;k + 1) ,sometimes it is better
to use it together with theorem 5 or 6. For instance,let
p = ab + 1 ,and we want to get an upper bound for
F,(p,p;p + 1) .1f we have good upper bounds for
F,(a,asa + 1) and F,(b,b;b + 1) respectively, then
we can get an upper bound for F,(ab,abs;ab + 1) by
corollary 4 firstly,and give F,(p,p;p + 1) an upper
bound by theorem 5 or 6.

3 A generalization of theorem 4

We know F,(3,3;4) = 14(see reference [10])
and F,(3,4;5) = 13(see reference [11]).

1317:- 29 fe
p =3(mod4)in corollary 3 was proved using F,(3,7;

8) <4 X 7+ 2= 30.
But use theorem 4 in the same paper [ 7] we have
F,(3,7;8) < F,(3,3;4) + F,(3,4;5) < 14 +
13 = 27.
From F,(3,7;8) << 27 and their inequality (see
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In reference [8], F,(3,p;p+ 1) <<



reference [8])

FaC3spspit 1) (2 = 1)F,(3:4:5) F F.(34
4 UgS A1)
we have

Corollary 5 If p == 4 then

Fv(3,p;p+1)<13p—:_11

Now we will give theorem 4 a natural generaliza-

for p=3 (mod 4).

tion, which can be proved by the same method.
Theorem 8 Leta, << *** << a,,7 == 1 be positive
integers and p;, > max{a,,b;},i =1, ,s5, where p,and

b; are positive integers too. Then

l !
F,,(a,,---,a,, Eb‘; Z(P. — 1) -+ 1) <
= =1

l
EFv(al9"' 7ar9bi;Pi) .
=1
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