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A Nonmonotonic Trust Region Algorithm with Line
Search for Unconstrained Optimization *
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Abstract: Combining trust region and line search with nonmonotone technique, we give a
nonmonotone trust region method for unconstrained optimization. Under suitable conditions, the
" global convergence and Q-quadratic convergence of our algorithm are well proved. When the trial
step is not accepted,we get the next iterative point by nonmonotone line search technique. Unlike
traditional nonmonotone algorithms,our method can avoid the possibility that the reference function
value used to generate non-monotonicity may be much larger than the real function value. Primary
numerical results show that this algorithm is efficient.
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Q-quadratic convergence
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1 Introduction

In this paper, we consider the following
unconstrained optimization problem

minf(z), €119
zER"

where f: R" — R is a continuously differentiable
function.

There are two basic approaches to solve the
problem (1. 1), namely, line search method and trust

region method. In the line search method, a
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computation is performed in a descent direction and a
stepsize is found along the direction ,see references[ 1~
3]. In the trust region method ,there is a region around
the current point and a step is chosen to stay in this
region where a quadratic model is trusted to be
correct. Actually, a trust region method is used to
generate a step by the following quadratic model ;
minm,(s) = f, + gis + %STB,,S,

AT | R&e)
where f, € Rand g, € R" are the function value and
the gradient value of f evaluated at @, respectively, B,
€ R"™"is the Hessian matrix of f evaluated at z; or an
approximation to it, A;is the trust region radius and is
modified during iterating,based on how well the model
agrees with the actual function values. Because of the
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strong convergence and- robustness, many previous
studies on the trust region method were reported in
references [4~7].

The traditional trust region method for
optimization is a monotone method which requires
function values decreasing during iterating. However,
Grippo et al™. found that it was available to find the
solution of optimization problems by relaxing the
requirement, especially in the presence of steep-sided
valleys. Deng et al"). proposed a nonmonotonic trust
region method which used the nonmonotonic technique
proposed by Grippo et al®. Numerical results are
promising.

But there are two shortcomings for the
nonmonotonic algorithms proposed by Deng et al®l.
and Grippo et al®. One is that the numerical
performances of the algorithms heavily depend on a
preset parameter which is used to obtain non-
monotonicity. The another one is that the reference
function value may be muchlarger than f, so as to
reduce the efficiency of the algorithms. Recently, Dai
and Zhang''have proposed a new nonmonotonic line
search method which can overcome the above
disadvantages. Their gradient method with the
nonmonotonic line search is effective.

In this paper, we present a nonmonotonic trust
region method with line search. It is similar to the
method proposed by Nocedal et al®. but has two
significant differences from that of Nocedal et al®®l.
Firstly, in order to obtain the non-monotonicity, the
reference function value is amended by the following

formulae which are similar to that of Dai et al,i. e. ,

if 4, = 223
‘.,.f ;nax = ‘l-;nin > 7 ;

Foi i 1.3
max otherwise,

lfp =0,

e oo By ik ety ey D

: fi_, ,otherwise, -
if ly # pand p < v,
f;:f;~1’ (1.°5)

where ¢ and v are positive integers, /; is the number of

iterations since the current minimal function value is

found. Let @ be a prefixed integer, fom =

max{f,_;: 0 j<<m(k)},m(k) =min{m(k— 1) +
;®EAtE 2006 45 R H13K% 2

1, @}, fi™ = min{f, : 0<<j<k}. Let 2, be the point
whose function value is equal to /3", f% is the maximal
function value from x, to the point x;, p.is the number
of iterations from the latest amending of the reference
function value to the iterative point z;,7, is a prefixed
constant. Secondly, when the trial step is not
accepted , the performance of a monotone line search
but a nonmonotonic one to find the next iterative point
will  be

nonmonotonic method in performance is better than

stopped. In this way, the present
that in the reference [8]. Primary numerical
experiments are encouraging.

This paper is organized as follows. Next section is
to describe the algorithm which combines trust region
method and nonmonotonic technique with line search.
Sections 3 and 4 are the establishment of global
convergence and Q-quadratic convergence of the
suitable conditions.  Primary

algorithm  under

numerical results are presented in Section 5.

2 Algorithm

At iterating k£, we generate a trial step s; to solve
the problem (1. 2). In order to reduce the cost of
computation, we solve the problem (1. 2) inaccurately

such that s, satisfies

| Bisi + gl <Cllgell iy
and
mp(0) — my(s) =
S|l gu ll min{Ay, [ gell /Il Bell }s 2.2

where & € (0,1),0 € (0,1) are constants.
Next we compute 7, the ratio between the actual
reduction f; — f(x; + s;) and the predicted reduction

mk(o) == mk(Sk)y i. e. )

5 e 8 € g V)

2 mk(O) s> m,,(sk) <

where f} is defined by Formulae(1. 3)~(1.5). If r, >

¢o» we define ;1 ; = z, + 5,3 otherwise, we compute a

(2:3)

descent direction d; satisfying

gidi<—a | gl? (2. 4)
and

ldell <allgl, (2.5)
where a, and a, are two prefixed positive constants.
Then along the direction d;, we search a stepsize g,
satisfying

flo + ady) < fi + Ougid, (2.6)
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and
Vf(xy + ad)’d, > ogkid,,
where 1/2 < 0 <o <1, let 24, = x4 + ad,.

Now ,we describe the complete algorithm.

Algorithm 2. 1
method).

Step 0 Give z, € R",B, € R"™" is a symmetric
matrix, the initial radius 8, > 0,1/2 <<0<<0<1,0<<
a; = assly =0,p = 0,4 E . RwE Ryw & R, Y =11,
Sl 1.0 0 = a0 eyl it i<
e fot = fo = fo* = fo = fo,k = 0.

Step 1 Compute gi. If || gi || = 0, stop; if & =

(207

(The nonmonotonic trust region

0, go to Step 3;otherwise,go to Step 2.

Step 2 If [, = u, update f; by Formula (1. 3),
letZ, = 0,p = 0; otherwise p = p + 1.

If p > v, update f; using Formula (1. 4);
otherwise, fi = fi_,.

Step 3 Compute an approximate solution s; of
the problem (1. 2),such that | s. || < A,, Formulae
(2.1) and (2. 2) are satisfied.

Step 4 Compute 7, by Formula(2. 3). If r, = ¢,
let 41y = zx + spand By € [ArycA4], then go to
Step 6;otherwise, go to Step 5.

Step 5 Compute a descent direction d, satisfying
Formulae (2. 4) and (2. 5). Get a stepsize @; by the line
search of Formulae(2. 6) and (2. 7). Then let z;,, =
z, + ad, and By € [ || 50 || s3],

Steplgself fpss i Jetafi =t =iife.. and
lyy1 = 0; otherwise, 4,1, = [, + 1.

If far: > fiy let fizy = fir1. Compute f345.

Step 7 Update B;and set k. = £ + 1. Go to Step

Remark 2. 1
the same way as that in the reference [ 5],and,in Step
5, d, satisfying Formlae (2. 4) and (2. 5) can be
generated by the method in the reference [9].

In Step 3, s; can be computed in

Remark 2.2 The matrix B, can be updated by

any quasi-Newton formula™®,
3 Global convergence

The following is to analyze the behavior of
Algorithm 2. 1 when it is applied to the problem (1.1)
and some assumptions are required.

Assumption 3.1 The level set 2 = {x €
R": f(x) < f,} is bounded.
98

Assumption 3.2 There exists a # > 0, such
that || B, || << B for all &

Assumption 3.3 There exists az > 0 such that
|l glx) —g» || <t|lz— y]| forallz,y € R"

To be simple,we denote the following notations;
I=({k:rn=c},J ={k:rnn<c),B=0ifkE I,
B = (gid)?/ | di |l %if & € J, and

K, ={q@)+i€ N,l,i, = pyq(1) <qG+ 1},

(3.1
where 7 denotes the 7 -th point satisfying /; = x in the
sequence {z;},q(i) denotes its subscript in the
sequence {z;},N is the set of natural numbers.

Lemma 3.1 Let {z,} be the sequence generated
by Algorithm 2. 1,then x; € £ for all 4.

Proof We prove the lemma by induction. =, €
£ is obviously true. Suppose that x; € 0, for all j
satisfying 0 << j << k. Now we will prove that z,,, €
Q0.

From Formulae (1. 3) ~ (1. 5),it follows that f;
€ {fi, [, fi_.}. For f%,fr=, fi_, are the function
values of points which belong to the set {z; : 0 << j <<
k}, we have that max {f%, ff,fi_.} < fo.
Furthermore, f; < f,.

If # € I, from Formula(2. 3),we know that f,,,
< fi; if k € J, it follows from Formula (2. 6) that
Sfiy1 < fi. Thus,the following inequality holds for all 2

i< 1L 3. 2)
This, together with f; << f,, implies that z,,, € 0.

Lemma 3.2 Let {z;} be the sequence generated
by Algorithm 2.1, then for all %,

Fi = fu o

Proof It follows from Formulae(1. 3) ~ (1. 5)
that /3 € {fs, /™, fi_.}. So from Formula(3. 2),the
definition of f§ and f*, we have that Formula (3. 3)
holds for all 4.

Lemma 3.3 Suppose that Assumption 3. 3 holds
and @, satisfies Formulae(2. 4) and (2.5). Then

= ((1—o)/t)|gidil/ | dill % 3.4
where ¢ is defined by Formula (2.7) and ¢ by
Assumption 3. 3.

Proof The proof is the same as that of Lemma
2.1 in the reference [9].

Next,under some conditions,we will prove that

lim inff, = 0, 7 (3.5)
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whether K, which is defined by Formula (3.1), is
finite or infinite.

Lemma 3. 4 Suppose that Assumptions 3.1~
3. 3 hold,and there exists a constant € > 0 such that

Il g« |l = e, for all & If K, is a finite set,then Formula
(3. 5) holds.

Proof Since K, is a finite set,we get that /, < u
and p > v when £ is sufficiently large,and f} can only
be updated by Formula(1. 4).

Now, we will prove that

lim supf, = lim f;. (3.6)
From Formulae (1. 4) and (3. 2),we have that for 4
sufficiently large,

Sire < fir1 < fie (3.7)
Assumption 3.1 and Formula(3. 7) imply that {f}} is

convergent;and lir? sSupf it = }imf;.
Suppose that lin:’supf,, <ot aThen 9 =of t =
lirim supfi > 0. So,for large enough % ,

A<t —1+t=-r-g<r-1I<h
(3.8
For sufficiently large £ ,from Formula (3. 8) and the
definition of ™, we have that fi_, > f™=. If ff= >
S, it follows from Formula (1. 4) that f; = fi,
which contradicts Formula (3. 8). Thus, fi* = fi,
that is, when % is large enough, {f} is monotonically
increasing, which should result in /, = g This
contradicts that K, is a finite set,so Formula (3. 6)
holds.
Thus, there exists an infinite set K,, such that the
subsequence {f; : £ € K,} satisfies
‘(el’i(:?%f‘ = limfj. (3.9
For k2 4+ 1 € K,, we know that either 2 € Tork € J.
Next,we prove the lemma in two cases.
Case 1 k€ I, for large enoughk+ 1 € K, . It
follows from Step 4 of Algorithms 2. 1 and Formula
(2.2), || g« |l = & and Assumption 3. 2 that

Frwr S — co08, min{A;,&,/B}. (3.10)
From Formulae (3. 9) and (3. 10),we obtain that
Ay —> 0, €3, 11)

wherek € Iand %k + 1 € K,.
Case 2 k€ J, for large enough 2+ 1 € K, . By
Formulae(2. 6) and (3. 4) ,we know that
fenn < fi — (0Q0 — o) /) (gid)?/ || di || *.
€3:12)
rEMAFE 20064558 F13EE2M

The above inequality, together with Formula (3. 9),
implies that

(gid)?/ | dill * — 0,
where 2 € Jand 2+ 1 € K,.

From Formulae (3. 11) and (3. 13) and the
definition of B: , we conclude that Formula (3. 5)
holds.

Lemma 3.5 Suppose that Assumptions 3. 1~

£3.13)

3. 3 hold,and there exists a constant & > 0 such that
Il gl = & for all & If K, is an infinite set, then
Formula(3. 5) holds.

Proof For arbitrary q(G) € K,,q(: + 1) € K,,
when £ satisfies (i) << & << q(i + 1), /% can only be
updated by Formulae(1. 4) and (1. 5) ,thus for ¢(i) <
k=2 g

fi < i (3.14)

Now, we prove that there exists an infinite set
K, such that the subsequence {f; : ¢ € K,} satisfies

lim fy= lim f%. 3..15)

HEK )-+co g(i)—»o0

From Formulae (1. 3) and (3. 14), for all
satisfying (i) << k << q( + 1), we have that

i< foo < 385 (3.16)
It follows from the definition of f}** ,Formulae(3. 2),
(3.3) and (3. 16) that

f:n(‘iin< max {f:(“(g’fb} < ~ max {ﬂ;'('i’)(’
Q) <k<q(i+1)

q()<ksq(i+1)
fi} < il (3.1
From Formula (3. 17)andAssumption 3. 1, 5} is the
function value of some points which belong to the level
set (), we obtain that {f}3}} is convergent. So, there
exists an infinite set K; such that Formula (3. 15)
holds.
In addition, for any %, there exists a natural
number 7, such that ¢(i) <k <<q(G + 1).
Next,we prove the lemma in two cases.
Case 3 k€ I, for large enoughk + 1 € K, . It
follows from Formulae(3.10) and (3. 16) that
Junr < S35 — codemin{Ay, & /B). (3.18)
From Formulae (3.15) and (3.18), the following
formula holds
A —> 0,
wherek € Iandk + 1 € K,.
Case 4 k€ J, for large enough 2 + 1 € K;.
From Formulae(3. 12) and (3. 16),we have that
S < ff,"(‘}’i — (01 — o) /t)(gidV)?/ Il 2
(3: 209
99
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The above inequality, together with Formula (3. 15),
implies that

(gid?/ | dill 2 — 0,
where 2 € Jand 2 + 1 € K,.

From Formulae (3.19) and (3.21) and the
definition of B:, we conclude that Formula (3. 5)
holds.

Theorem 3.1

(3.:21)

Let {x:} be the sequence
generated by Algorithm 2. 1. If Assumptions 3. 1~
3. 3 hold, then

lir‘n mf]le =0 (3.22)
Proof We will prove the theorem by

contradiction. Suppose that there exists a constant €, >
0, such that for all %,

Il gell = e
We denote that g, = Bisi + g

(3. 23)
It follows from
Formulae(2. 1), (3. 23) and Assumption 3. 2 that
Isell = e — &l /1 Bell = Cll gl
Il >/ Bl = e — /8 (3.24)
holds for all # € I. By Formulae (2. 4), (2. 5) and
(3. 23) ,we know that for all 2 € J
lgidi*/ 1 dill 2 = al || gu |l */a} = alei/aj.
(3. 25)
The definition of Bi, || s || < A:, Formulae(3. 24) and
(3. 25) imply that
B = min{e,(1 — §)/B,aie}/aj}. (3. 26)
It follows from Lemmas 3. 4 and 3. 5 that Formula
(3. 26) contradicts Formula(3. 5).

4 Local convergence

In this section, we will establish the Q-quadratic
convergence of Algorithm 2. 1. We suppose that {z;} is
a sequence generated by Algorithm 2.1 and the
following assumptions hold.

Assumption 4.1 f(x) is twice continuous and
V2f(x) is Lipschitz continuous in .

Assumption 4.2 z" is a stationary point of
f(x*) and V%f(x) is positive definite.

Assumption 4. 3 If B, is positive definite and

| Bi'gw | << A sthen s, =— By'gu.

Obviously, s, =— Bj 'g; satisfies Formulae (2. 1)
and (2. 2).

Lemma 4.1 Suppose that Assumptions 3. 1,4. 1
and 4.2 hold,and B, = V2f(x) for all . If {x;}

100

converges to x" , then

lim | g2 | = D

Proof By Assumptions 3. 1 and 4. 1,we get that
Assumption 3. 2 holds,and Assumptions 3.1 and 4. 1
imply that Assumption 3.3 holds. It follows from
Theorem 3. 1, Assumption 4. 1,and {x;} converges to
z* ,that the lemma is true.

Lemma 4.2 Suppose that Assumptions 3. 1 and
4.1~4. 3 hold,and B, = V*f(x,) for all &. If {x,}
converges to z" , then

T 2 Co (4.2)
holds for % large enough.

Proof Suppose that £ is large enough. Then from
definite. If

Assumption 4. 1, B, is positive

| Bi'gell > Ay we have that | gl >
A Bl T || Be'gel < Ay it follows from
Assumption 4. 3 that 5, =— Bi'g, and | gl >
[l sell /1l Be' Il . Note that & = [l si |l , we obtain

that
lgell = lisell /1Bl (4.3)
holds for all .. By Formulae (4. 1) and (4. 3), we
know that
lim Il si:l-= 0.

Note that | Bi' |l | B ll =
and (4. 3),it follows that

my (5p) >

Il s ll Il sl ®
BT 0BT = TB 1718
Using Formulae(2. 3) and (3. 3),we have that
fk T f(l‘r 5
m;(0) — mu(sy)°
By Assumptions 4. 1 and 4. 2, Taylor expansion, B, =

Vi f(z:), Formulae(4. 4) and (4. 5),we deduce that

|fle_f(~rk+5k)
m‘(O) = m,,(s,,)

1/2(st2f(xk A5 = SZBI,S‘;)

(4.4)
1. From Formulae(2. 2)

5 sl

B TB

————min {4,

; (4.5)
Al

Ty = (4.6)

_1|__-

| m; (0) — m,(se) | <
BB BA | V2 f e+ As) — Billy (4D
where A € (0,1). Thus,

gl tBmd i) (4.8)

kco M (0) — my(se)
From Formulae(4. 6) and (4. 8) ,we get that Formula

(4. 2) holds for sufficiently large % .
The above lemma implies that our algorithm
reduces to a nonmonotonic trust region method
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without line search for & sufficiently large. _

Theorem 4. 1~ Suppose that Assumptions 3. 1
and 4.1~4.3 hold,and B, = V*f(x;) for all £ If
{x:} converges to " , then Algorithm 2.1 has the Q-
quadratic convergence.

Proof We denote that K = {k: || Bilg.| >
A}, Then || gull > A/ || Bi' || for all 2 € K. This,
together with Formula(2. 2) ,indicate that :

lgell Isell +1/20sll?ll Bell = mu(0) —

mi(s) = 00/ CI Be' || 21l Be ). (4.9)
Suppose that K is an infinite set. It follows from
Formulae(4. 1), (4. 4) and (4. 9) that

llm A[, = Q.
k(EK)—>co

From Lemma 4. 2,we know that for sufficiently large
kyDyy = A,. This contradicts Formula(4. 10).

Thus, K is a finite set. From Assumption 4. 3,we

(4.10)

obtain that s, = — By 'g; for large enough % ,i. e. , the
step reduces to the Newton step when £ is sufficiently
large. This means that Algorithm 2.1 reduces to
Newton method for large enough % . By Theorem 3. 2.
1 in the reference [ 10 ], Algorithm 2. 1 has the

property of Q- quadratic convergence.
5 Numerical results

Algorithm 2. 1 is implemented and compared with
the trust region algorithm combining line search
(TRACLS) given by Nocedal et al. [,

The algorithm is coded in Matlab 6.1"". Our
program , which is used to find s, satisfying Formulae
(2.1) and (2. 2),is similar to Algorithm 4. 1 in the
reference [5]. The initial trust region radius is chosen
as A, = 0. 8. B, is updated by BFGS formula. When
reamending the reference function value,we take u =
4,0 = 20,0 = 10,7_ 10. If we use line search
technique to get the next iterative point, we take d,
= — g, however, we take d, =— B, 'g,, when B, is
positive definite. In all tests, the initial matrix B, was
chosen as | f,|I, where I is the identify matrix.

The stopping condition is max { || g || 5 || z» —
m |} <107°

We have tested the algorithms for the problems
given by Moré et al'?, The corresponding numerical
results are reported in Table 1, where I,F,G denote

the number of iterations, function evaluations and

JEMFE 20065458 F13E5F 2

gradient evaluations, respectively; S denotes the
number of line searches.

Table 1 Numerical comparisons

Broyden Tridiagonal 8/8 20/29/21(4) 19/24/23(1)
16/16  24/45/25(10)  24/29/28(1)
24/24  32/41/33(4) 29/34/33(1)
28/28  34/41/35(3) 30/35/34(1)
32/32  34/41/35(3) 31/36/35(1)
Linear Function-rank 1 12/13 6/53/7(1) 5/6/5(1)
16/17  6/53/7(1) 5/6/5(1)
48/49  10/11/11(0) 6/7/6(1)
52/53 10/11/11(0) 6/7/6(1)
68/69 11/25/12(3) 6/7/6(1)
80/81 12/59/13(1) 8/9/8(1)
Linear Function-rank 1 12/13  5/6/6(0) 4/5/4(1)
T e i 56/57 10/11/110)  7/8/7(1)
60/61 11/58/12(1) 6/7/6(1)
68/69 11/58/12(1) 11/13/10(3)
72/73  11/58/12(1) 21/25/18(7)
80/81 12/59/13(1) 24/32/25(7)
Discrete Integral Equation 12/12  21/55/22(9) 19/22/21(1)
36/36  15/36/16(7) 16/19/18(1)
52/52  18/37/19(6) 14/17/16(1)
64/64 17/34/18(6) 14/17/16(1)
128/128 15/20/16(2) 11/14/13(1)
256/256 11/12/12(0) 8/11/10(1)
E?SESSEd Helical  36/36  44/50/45(2)  44/46/45(1)
150/150 45/50/46(2) 46/48/47(1)

From Table 1,we find that, for e quite a number
of tested problems, Algorithm 2.1 outperforms
TRACLS. Therefore, Algorithm 2.1 is an efficient

method for unconstrained optimization.
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