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Finite Non-solvable Groups with the Given Length of
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Abstract: Let G be a finite non-solvable group and Z(G) = 1. If the non-central conjugacy-class-

lengths of G are pq, pr*,qr*, then G = A;. If the non-central conjugacy-class-lengths of G are 15,

5py15055 5% 3p" then G =15;.
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1 Introduction

Using some quantities of conjugacy classes of
groups,many authors have described the structure of a
finite group, in Reference [ 1], Bertram, Herzog and
Mann obtained the following graph I' (G) to a group
G. The vertices of I (G) are represented by the non-
central conjugacy classes of G, and connect two
vertices D and C with an edge if |D| and |C| have a
common prime divisor.

In the recent years, by studying the properties of
I' (G), many authors have obtained some interesting

resultst~*

. This idea clearly leads to a reassuring
result;: G is Abelian if and only if T' (G) has no
vertices. In Reference [ 2] M. Fang and P. Zhang
obtained the complete list of all G such that G is a non-
Abelian group with T (G) containing no triangles.
One of the questions that were studied extensively

is what can be said about the structure of G if G is a
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non-Abelian group with T (G) containing some
triangles. Answers in many cases were given''"*), Our
main aim in this article is to prove that if G is a finite
non-solvable group and Z(G) = 1. Then the
alternating group of degree 5, A;, is the unique group
G such that G has the non-central conjugacy-class-
lengths pg,pr?,qr®. In this case, I’ (G) is a complete
graph containing exactly four triangles. For the non-
central coﬁjugacy—class—lengths 15,5p,15p,5p%,3p° of
G, we prove that G is the symmetric group Ss, and
I' (S5) is a complete graph containing exactly twenty
triangles.

Let 7(G) = {p|pis a prime and p devides |G|},
7.(G) = {p|pis a prime and G has a conjugacy class C
such thatp devides |C|},N(G) = {n|G has a non-
central conjugacy class C such that |C| = n}. Clearly,
7. (G) © n(G).

In this paper, all groups mentioned are assumed

to be finite and p,q,7 are distinct primes.
2 Preliminaries

In order to prove our results, we need the
following lemmas, some of which are well known.
Lemma 1% If p is a prime, then p doesn’t
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devide n for each n € N(G) if and only if G has the
Sylow p -subgroup imrits center Z(G).

Lemma 2!  Let G be a group with Z(G) = 1.
Then 7(G) = 7.(G).
Lemma 3] If G has two elements x and y such

that zy = yz and Glzlsilal)i=:1. Then Celzy) =
Co(z) N Ce(y).

Lemma 4°1 If 4 doesn’t devide 7 for each n €
N(G), then G is solvable.

Lemma 5% If N <|G, then |z"| devides |z°|
for allx € N.
Lemma 6 If Z(G) = 1and N(G) = {pq,pr?,

gr}, then |G| = r’pq.

Proof Since Z(G) = 1, we have n(G) = {r, p,
q} from Lemma 2 and so |G| = r*p’¢". Clearly, a =
2a8 =Tsand ¥ =41,

We will prove thata = 2,8 =7 = 1. Let R €
Sy, (G) and 1 # x € Z(R),R © Cs;(x). Hence, the
length of the conjugacy class 2%is |z°| = |G:Cs(2) |,
which is a divisor of |G:R|. Thus, |2°| = pq,
|CeCx)| = rp?~l¢"t., Assume B > 1. Then
Pl1Cc(x)|. Let P* € Syl,(Cs(x)). Then there
exists a Sylow p -subgroup P of G such that P* is
normal in P since |P:P* | = p. Further, P* ) Z(P)
# 1. Taking 1% y € P* (| Z(P). In the same way,
we get |Co(y) | = r"?pPq . Since y € Cs(x) 2y =
yx,and (|z|,|y|) = 1, we obtain Cs(zy) = Cs(x)
N Ce(y) by ICelaxy) | <
(|Ce(@) | v|Ce(y) |) = r*2pf~ ¢, Tt follows that
[ (xy)?| = |G|/ |Cs(xy) | = r*pgs for some integer s,
{a,prisqr*). So B = 1.

Lemma 3. Hence,

contradicting N(G) =
Similarly, ¥ = 1.

Next we claim @ = 2. Suppose not,let @ > 2 and P
€ Syl,(G). Taking 1 # x € Z(P), then P = C¢(x).
Hence, [2°| = |G:Cis(x)|, which is a divisor of
|G:P|. Thus, |z°|'=rt¢:;|Cclx)| =ir"%p: Since a
= 2, we have that » devides |Cy(x)|. Let R** €
Syl,(Cs(x)). Then there exists a 7- subgroup R* of
R, a Sylow r- subgroup of G such that R* is normal in
R with R** <|R" <|R. Furthermore, R** | Z(R")
7 1; Takingl # 3y € R** ) Z(R") and so R" <
Ce(¥),|3°| = |G:Ce(y) | is a divisor of |G:R" | =
rpq. We get || = pg, [Co(y)| = r*, and |Co(xy) |

< (ICs(@) |y |Celw ) i= =% It follows that
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[(xy)’| = |G|/ |Cs(xy) | = r*pqt for the integer ¢, it
is a contradiction again. Furthermore, |G| = r*pq, as
desired.

By similar procedures,we have
If Z(G) = 1 and N(G) = {pq,pqr,
gr qri,pr*}, then |G| = *pq.

Lemma 7

3 Main results

By the above several lemmas, we prove the main
results as follows.

Theorem 1 If G is a non-solvable group with
Z(G) = land N(G) = {pq,pr’,qr'}, then G = A,.

Proof Since Z(G) = 1 and N(G) = {pq,pr’,
qr*}, we have |G| = »*pg from Lemma 6. It follows
that G = A; since G is non-solvable.

Corollary 27 Let G be a group. If Z(G) = 1
and N(G) = N(A,), then G is isomorphic to A;.

Proof Since Z(G) = 1 and N(4;) = (12,15,
20}, |G| = 60 from Lemma 6. If G is solvable, then
there is a proper normal subgroup H > 1 of G. We
may chose H such that H is a minimal normal
subgroup of G. It follows that |H| € {2,3,4,5}.

On the other hand, by Lemma 5 H has the
following class equation ;

|H| =1+ 12a + 156 + 20c.

Where a = 0,6 = 0,c = 0 are integers. It is clear
that there is no solutions of the class equation of H ,
and it is a contradiction. Hence we may assume G is
non-solvable, and the conclusion follows from the
Theorem 1.

By similar procedures,we have

Corollary 3 There are no group G such that
Z(G) = 1and N(G) = {12,3p,4p}, where p > 5,p
# 1 (mod 12).

Theorem 4
that Z(G) = 1 and N(G) = {15,5p,15p,5p%,3p°}
with p & {3,5}, then p = 2, and G is the symmetric

If G is a non-solvable group such

group S;.
Proof Since G is non-solvable, p = 2 from
Lemma 4. For a prime s withs & = = {2,3,5}, from
Lemma 1 that G has the Sylow s- subgroup in its
center. Let H be a n'-Hall subgroup of G, by the
Schur-Zassenhaus theorem, H has a complement

(F # % 8M Continue on page 8)
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subgroup K in G such that G = H X K with H << Z(G)
and so H = 1,K = G. It is easy to see that |G| = 120
from Lemma 7 and so G = S; or Z, X A;, the direct
product of a cyclic group of order 2 and As, or SL(2,
5) since G is non-solvable'”. Note that Z(Z, X A;) =
Z,and Z(SL(2,5)) = Z, ywe have G = S;.
According to Theorem 4,for group S; with N (S;)
= {10,15,20,24,30}, we have the following result.
Corollary 5
that Z(G) = 1 and N(G)

If G is a non-solvable group such
=IN(S5) 5 then & =x=Ss.
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