Finite Non-solvable Groups with the Given Length of Conjugacy Classes* 具有给定共轭类长的有限非可解群

ZHONG Xiang-gui 钟祥贵

(Department of Mathematics, Guangxi Normal University, Guilin, Guangxi, 541004, China) (广西师范大学数学系,广西桂林 541004)

Abstract: Let G be a finite non-solvable group and Z(G)=1. If the non-central conjugacy-class-lengths of G are pq, pr^2 , qr^2 , then $G \cong A_5$. If the non-central conjugacy-class-lengths of G are 15, 5p, 15p, $5p^2$, $3p^3$, then $G \cong S_5$.

Key words: finite group, non-solvable group, conjugacy class, graph

摘要:设G是有限非可解群且Z(G) = 1. 如果G的非中心共轭类长为pq, pr^2 , qr^2 ,那么G同构于5次交错群 A_5 ; 如果G的非中心共轭类长为15,5p,15p, $5p^2$, $3p^3$,那么G同构于5次对称群 S_5 .

关键词:有限群 非可解群 共轭类 图

中图法分类号:O152.1 文献标识码:A 文章编号:1005-9164(2006)01-0004-02

1 Introduction

Using some quantities of conjugacy classes of groups, many authors have described the structure of a finite group, in Reference [1], Bertram, Herzog and Mann obtained the following graph $\Gamma(G)$ to a group G. The vertices of $\Gamma(G)$ are represented by the noncentral conjugacy classes of G, and connect two vertices D and C with an edge if |D| and |C| have a common prime divisor.

In the recent years, by studying the properties of $\Gamma(G)$, many authors have obtained some interesting results^[1~3]. This idea clearly leads to a reassuring result: G is Abelian if and only if $\Gamma(G)$ has no vertices. In Reference [2] M. Fang and P. Zhang obtained the complete list of all G such that G is a non-Abelian group with $\Gamma(G)$ containing no triangles.

One of the questions that were studied extensively is what can be said about the structure of G if G is a

non-Abelian group with $\Gamma(G)$ containing some triangles. Answers in many cases were given^[1,3]. Our main aim in this article is to prove that if G is a finite non-solvable group and Z(G)=1. Then the alternating group of degree 5, A_5 , is the unique group G such that G has the non-central conjugacy-classlengths pq, pr^2 , qr^2 . In this case, $\Gamma(G)$ is a complete graph containing exactly four triangles. For the non-central conjugacy-class-lengths 15, 5p, 15p, $5p^2$, $3p^3$ of G, we prove that G is the symmetric group S_5 , and $\Gamma(S_5)$ is a complete graph containing exactly twenty triangles.

Let $\pi(G) = \{p \mid p \text{ is a prime and } p \text{ devides } |G|\}$, $\pi_c(G) = \{p \mid p \text{ is a prime and } G \text{ has a conjugacy class } C$ such that p devides $|C|\}$, $N(G) = \{n \mid G \text{ has a noncentral conjugacy class } C \text{ such that } |C| = n\}$. Clearly, $\pi_c(G) \subseteq \pi(G)$.

In this paper, all groups mentioned are assumed to be finite and p,q,r are distinct primes.

2 Preliminaries

In order to prove our results, we need the following lemmas, some of which are well known.

Lemma 1^[3,5] If p is a prime, then p doesn't Guangxi Sciences, Vol. 13 No. 1, February 2006

收稿日期:2005-07-07

修回日期:2005-09-06

作者简介:钟祥贵(1963-),男,湖南武冈人,副教授,主要从事群论研究。

^{*} Supported by the Natural Sciences Foundation of China (No. 10161001) and the Sciences Foundation of Guangxi (No. 0575050).

devide n for each $n \in N(G)$ if and only if G has the Sylow p-subgroup in its center Z(G).

Lemma 2^[4] Let G be a group with Z(G)=1. Then $\pi(G)=\pi_{\epsilon}(G)$.

Lemma 3^[4] If G has two elements x and y such that xy = yx and (|x|, |y|) = 1. Then $C_G(xy) = C_G(x) \cap C_G(y)$.

Lemma 4^[3,5] If 4 doesn't devide n for each $n \in N(G)$, then G is solvable.

Lemma 5^[3] If $N \leq G$, then $|x^N|$ devides $|x^G|$ for all $x \in N$.

Lemma 6 If Z(G) = 1 and $N(G) = \{pq, pr^2, qr^2\}$, then $|G| = r^2pq$.

Proof Since Z(G) = 1, we have $\pi(G) = \{r, p, q\}$ from Lemma 2 and so $|G| = r^{\alpha} p^{\beta} q^{\gamma}$. Clearly, $\alpha \geqslant 2, \beta \geqslant 1$, and $\gamma \geqslant 1$.

We will prove that $\alpha = 2, \beta = \gamma = 1$. Let $R \in$ $Syl_r(G)$ and $1 \neq x \in Z(R), R \subseteq C_G(x)$. Hence, the length of the conjugacy class x^G is $|x^G| = |G:C_G(x)|$, which is a divisor of |G:R|. Thus, $|x^G| = pq$, $|C_G(x)| = r^{\alpha} p^{\beta-1} q^{\gamma-1}$. Assume $\beta > 1$. Then $p||C_G(x)|$. Let $P^* \in Syl_p(C_G(x))$. Then there exists a Sylow p-subgroup P of G such that P^* is normal in P since $|P:P^*| = p$. Further, $P^* \cap Z(P)$ $\neq 1$. Taking $1 \neq y \in P^* \cap Z(P)$. In the same way, we get $|C_G(y)| = r^{\alpha-2} p^{\beta} q^{\gamma-1}$. Since $y \in C_G(x)$, xy =yx, and (|x|, |y|) = 1, we obtain $C_G(xy) = C_G(x)$ \bigcap $C_G(y)$ by Lemma 3. Hence, $|C_G(xy)| \leqslant$ $(|C_G(x)|, |C_G(y)|) = r^{\alpha-2} p^{\beta-1} q^{\gamma-1}$. It follows that $|(xy)^G| = |G|/|C_G(xy)| = r^2 pqs$ for some integer s, contradicting $N(G) = \{pq, pr^2, qr^2\}$. So $\beta = 1$. Similarly, $\gamma = 1$.

Next we claim $\alpha=2$. Suppose not, let $\alpha>2$ and $P\in Syl_p(G)$. Taking $1\neq x\in Z(P)$, then $P\subseteq C_G(x)$. Hence, $|x^G|=|G:C_G(x)|$, which is a divisor of |G:P|. Thus, $|x^G|=r^2q$, $|C_G(x)|=r^{a-2}p$. Since $\alpha>2$, we have that r devides $|C_G(x)|$. Let $R^{**}\in Syl_r(C_G(x))$. Then there exists a r- subgroup R^* of R, a Sylow r- subgroup of G such that R^* is normal in R with $R^{**}\triangleleft R^*\triangleleft R$. Furthermore, $R^{**}\cap Z(R^*)$ $\neq 1$. Taking $1\neq y\in R^{**}\cap Z(R^*)$ and so $R^*\leqslant C_G(y)$, $|y^G|=|G:C_G(y)|$ is a divisor of $|G:R^*|=rpq$. We get $|y^G|=pq$, $|C_G(y)|=r^a$, and $|C_G(xy)|\leqslant (|C_G(x)|, |C_G(y)|)=r^{a-2}$. It follows that

 $|(xy)^G| = |G|/|C_G(xy)| = r^2pqt$ for the integer t, it is a contradiction again. Furthermore, $|G| = r^2pq$, as desired.

By similar procedures, we have

Lemma 7 If Z(G) = 1 and $N(G) = \{pq, pqr, qr, qr^2, pr^3\}$, then $|G| = r^3pq$.

3 Main results

By the above several lemmas, we prove the main results as follows.

Theorem 1 If G is a non-solvable group with Z(G) = 1 and $N(G) = \{pq, pr^2, qr^2\}$, then $G \cong A_5$.

Proof Since Z(G)=1 and $N(G)=\{pq,pr^2,qr^2\}$, we have $|G|=r^2pq$ from Lemma 6. It follows that $G\cong A_5$ since G is non-solvable.

Corollary $2^{[6]}$ Let G be a group. If Z(G) = 1 and $N(G) = N(A_5)$, then G is isomorphic to A_5 .

Proof Since Z(G) = 1 and $N(A_5) = \{12,15, 20\}, |G| = 60$ from Lemma 6. If G is solvable, then there is a proper normal subgroup H > 1 of G. We may chose H such that H is a minimal normal subgroup of G. It follows that $|H| \in \{2,3,4,5\}$.

On the other hand, by Lemma 5 H has the following class equation:

$$|H| = 1 + 12a + 15b + 20c.$$

Where $a \ge 0$, $b \ge 0$, $c \ge 0$ are integers. It is clear that there is no solutions of the class equation of H, and it is a contradiction. Hence we may assume G is non-solvable, and the conclusion follows from the Theorem 1.

By similar procedures, we have

Corollary 3 There are no group G such that Z(G) = 1 and $N(G) = \{12, 3p, 4p\}$, where $p > 5, p \not\equiv 1 \pmod{12}$.

Theorem 4 If G is a non-solvable group such that Z(G) = 1 and $N(G) = \{15, 5p, 15p, 5p^2, 3p^3\}$ with $p \in \{3, 5\}$, then p = 2, and G is the symmetric group S_5 .

Proof Since G is non-solvable, p=2 from Lemma 4. For a prime s with $s \notin \pi = \{2,3,5\}$, from Lemma 1 that G has the Sylow s- subgroup in its center. Let H be a π' -Hall subgroup of G, by the Schur-Zassenhaus theorem, H has a complement

(下转第8页 Continue on page 8)

当V=0时,

有 $\frac{b}{2}y^2(f(x) - b) = 0$, cx + by = 0, $\frac{c}{b}y + z = 0$, 又 f(x) - b > 0, 从而 x = y = z = 0, 因而 V(t, x, y, z) 是定正的. 由于 inf $g(y) > \frac{c}{b}$, 则存在 $\varepsilon > 0$ 使 $g(y) - \frac{c}{b} > \varepsilon$.

当 $y \neq 0$ 时, $V(t,x,y,z) > \frac{c}{2} \varepsilon y^2 > 0$; 当 $y = 0, x^2 + z^2 \neq 0$ 时, $V(t,x,y,z) = \frac{c}{2} x^2 + \frac{b}{2} z^2 > 0$,故 V(t,x,y,z) 是无限大正定函数。 又 $V(t,x,y,z) \leqslant (cx + by)^2 + (b + 1) \int_0^y [f(x) - b] \eta d\eta + b(\frac{c}{b}y + z)^2 + (c + 1) \int_0^y [g(\eta) - \frac{c}{b}] \eta d\eta$,

且上式右端在(0,0,0) 处取值为(0,0,0) 处取值为(0,0,0) 有无穷小上界。

$$\begin{split} \dot{V}_{(2.2)} &= -c[f(x) - b]y^2 - [bg(y) - c]z^2 + \\ \int_0^y bf'(x)y\eta \mathrm{d}\eta + (cy + bz)e(t,x,y,z) \leqslant -c\varepsilon y^2 + \\ 4(1 + \frac{c+1}{b} + \frac{b+1}{c})(2 + 2b + \frac{2}{c\varepsilon})\tilde{e}(t), \\ &\Leftrightarrow \eta(t) = 4(1 + \frac{c+1}{b} + \frac{b+1}{c})(2 + 2b + \frac{2}{c\varepsilon})\tilde{e}(t), \\ & \pm \Re \# \int_0^\infty \tilde{e}(t) \mathrm{d}t = E < +\infty \ \mathrm{m} \\ & \int_0^\infty \eta(t) \mathrm{d}t < +\infty, \end{split}$$

由引理1知(2.2)的零解是全局渐近稳定的.

定理2证毕.

3 算例

例 1 考虑三阶非自治系统 $\ddot{x} + (\frac{1}{b} + 1 + e^z)\ddot{x} + b\dot{x} + \frac{e^x - e^{-x}}{2} = \frac{1}{1+t^2}(y+z)$ 的全局渐近稳定性.

解 这里 $f(x) = \frac{e^x - e^{-x}}{2}$, $f'(x) = \frac{e^x + e^{-x}}{2}$ $\geqslant 1 > 0$, $g(y) = \frac{1}{b} + 1 + e^y \geqslant \frac{1}{b} + 1$, 取 $a = \frac{1}{b} + 1$, 则 inf $g(y) \geqslant a$, inf $f'(x) \leqslant 1 + b = (1 + \frac{1}{b})b = ab$, 又 $|e(t,x,y,z)| \leqslant \frac{1}{1+t^2}(|y| + |z|)$,

 $\int_0^{+\infty} \frac{1}{1+t^2} dt = \frac{\pi}{2}$ 收敛,由定理1可知该系统是全局渐近稳定的.

参考文献:

- [1] 贾建文. 一类三阶非线性系统全局稳定性的 Liapunov 函数构造[J]. 应用数学学报,1999,22(4):621-623.
- [2] 张波,何敏.关于几类三阶非自治系统的全局渐近稳定性[J]. 东北师范大学学报(自然科学版),1983(3):91-100.
- [3] 张同斌.一类三阶非线性常微分方程解的全局渐近稳定性[J].河南大学学报,2000,30(2);45-48.
- [4] 王联,王慕秋.非线性常微分方程定性分析[M].哈尔滨:哈尔滨工业大学出版社,1987.

(责任编辑:黎贞崇)

(上接第5页 Continue from page 5)

subgroup K in G such that $G = H \times K$ with $H \leqslant Z(G)$ and so H = 1, K = G. It is easy to see that |G| = 120 from Lemma 7 and so $G \cong S_5$ or $Z_2 \times A_5$, the direct product of a cyclic group of order 2 and A_5 , or SL(2, 5) since G is non-solvable^[7]. Note that $Z(Z_2 \times A_5) \cong Z_2$ and $Z(SL(2,5)) \cong Z_2$, we have $G \cong S_5$.

According to Theorem 4, for group S_5 with $N(S_5)$ = $\{10,15,20,24,30\}$, we have the following result.

Corollary 5 If G is a non-solvable group such that Z(G) = 1 and $N(G) = N(S_5)$, then $G \cong S_5$.

References:

- [1] BERTRAM, HERZOG. MANN. On a graph related to conjugacy classes of groups [J]. Bulletin London Mathematical Society, 1990, 22;569-575.
- [2] FANG M, ZHANG P. Finite groups with graphs containing no triangles [J]. Journal Algebra, 2003, 264:

613-619.

- [3] CHILLAY D, HERZOG M. On the length of the conjugacy classes of finite groups [J]. Journal Algebra, 1990, 131:110-125.
- [4] CHEN G. On Thompson Conjecture [M]. Beijing: Chinese Science and Technology Press, 1992.
- [5] LI S. On the class length of elements of prime power order in finite groups[J]. Guangxi Sciences, 1999, 6(1): 12-13.
- [6] XIAO Y. The proof of the conjecture of Thompson when M is A₅ or A₆ [J]. Journal of Chongqing Teachers College, 1996, 13(3):12-15.
- [7] XU M, HUANG J, LI H, et al. Introduction to finite group theory [M]. Beijing: Publishing House of Sciences, 1999:199.
- [8] ZHONG X. On the groups order and the number of conjugacy classes [J]. Journal Mathematics Study, 2001, 34(4):356-359.

(责任编辑:蒋汉明 黎贞崇)