广西科学 Guangxi Sciences 2005, 12(1): 25~ 28

玻色型反氢原子结构及氘核 P^{*}_b¹n⁰¹和 P^{*}_b¹n⁰¹结构函数 的矩^{*}

The Structure of a Hydrogen Anti-atom of Bose Type and the Moment of the Structure Function of the Deuterons $P_B^{+} {}^1 n_B^0$ and $P_F^{+} {}^1 n_F^0$

焦善庆¹, 许弟余², 王蜀娟³ Jiao Shanqing¹, Xu Diyu², Wang Shujuan³

(1. 西南交通大学理学院物理系,四川成都 610031; 2. 四川职业技术学院物理系,四川遂宁629000; 3. 中国科学院国家天文台,北京 100012)

(1. Dept. of Phy., Sci. Coll., Southwest Jiaotong Univ., Chengdu, Sichuan, 610031, China;
2. Dept. of Phy., Sichuan Vocational and Technical Coll., Suining, Sichuan, 629000, China;
3. National Astronomical Observatory, Chinese Academy of Sci., Beijing, 100012, China)

摘要:根据费米型质子 P_{F} 、中子 n_{h} 电子 e^{-1} 的超对称性伴子玻色型 P_{b} 、 n_{h} $U_{c,b}$ 粒子,讨论反氢原子的结构,计 算费米型氘核 P_{F} · n_{h} 和玻色型氘核 P_{b} · n_{h} 结构函数的矩,结果发现反氢原子的结构与目前观测到费米型反氢原 子不同,氘核 P_{F} · n_{F} 结构函数的矩的理论值与实验数据较好相符, P_{b} · n_{h} 结构函数的矩的计算结果比 P_{F} · n_{F} 要 大,增大的值是由于费米型中性矢量反轻子 $P_{c,T}$ 结构函数的贡献所致.

关键词: 超对称伴子 氘核 反氢原子 结构函数的矩 玻色子与费米子

中图法分类号: 0572.32 文献标识码: A 文章编号: 1005-9164(2005) 01-0025-04

Abstract Based on the particles of Bose type \mathcal{P}_{B}^{-1} , n_{B}^{0} and $\overline{U_{eB}}^{-1}$, which are respectively the supersymmetry companions of the following particles of Fermi type the proton \mathcal{P}_{F}^{-1} , the neutron n_{F}^{0} and the electron e_{F}^{-1} , the structure of an anti-atom of hydrogen is discussed, and the structure function moment of the deuteron $\mathcal{P}_{F}^{+1}n_{F}^{0}$ of Fermi type and that of the deuteron $\mathcal{P}_{B}^{+1}n_{B}^{0}$ of Bose type are calculated. As a result, the structure of a hydrogen anti-atom is different from that of the present observed hydrogen anti-atom of Fermi type the theoretical values of the structure function moment of the deuteron $\mathcal{P}_{F}^{+1}n_{F}^{0}$ coincide well with the experimental data, but the calculated result of that of $\mathcal{P}_{B}^{+1}n_{B}^{0}$ is bigger than that of $\mathcal{P}_{F}^{+1}n_{F}^{0}$. The increase in value can be attributed to the contribution of the structure function of neutral vector antilepton $\overline{l_{F}^{0}}$. To Fermi type.

Key words supersymmetry companions, deuterons, an anti-atom of hydrogen, the moment of a structure function, bosons and fermions

费米型夸克 $u_{F}^{\frac{2}{3}}$ $d_{F}^{-\frac{1}{3}}$ 的反夸克有 2类: 一类是与 $u_{F}^{+\frac{2}{3}}$ $d_{F}^{-\frac{1}{3}}$ 有良好对称性的 $\vec{u}_{F}^{-\frac{2}{3}}$ $d_{F}^{-\frac{1}{3}}$; 另一类是在宇宙

早期因 CP破坏而产生 $u_{F}^{2} \stackrel{?}{_{3}} d_{F}^{-\frac{1}{3}}$ 的超对称伴子,即玻 色型反夸克 $\vec{y}_{B}^{2} \stackrel{?}{_{3}} \vec{y}_{B}^{-\frac{1}{3}}$. 以第一代而言,对应于 $u_{F}^{2} \stackrel{?}{_{3}} d_{F}^{-\frac{1}{3}}$ 构成的重子物态,其反重子物态也有 2类: 一类由 $\vec{u}_{F}^{2} \stackrel{?}{_{3}} d_{F}^{-\frac{1}{3}}$ 构成,另一类由 $\vec{y}_{B}^{2} \stackrel{?}{_{3}} \vec{y}_{B}^{-\frac{1}{3}}$ 构成^[3].

最近 CERN 和费米实验室都先后制成并观测到 反氢原子^[4].当 1个快速运动的反质子 P^{*}_F⁻¹通过原子 核时可以产生正、负电子对.在稀有的情况下,1个正

收稿日期: 2004-06-23

作者简介: 焦善庆 (1929-), 男, 云南南涧人, 教授, 长期从事理论物理研究

^{*} 国家自然科学基金 (19973008)和中国工程物理研究院科学技术基 金 (990226, 9702034)资助项目。

电子会粘在那个运动着的反质子 P_{F}^{+1} 上而构成 1个 费米型反氢原子 $P_{F}^{+1}\overline{e_{F}}^{-1}$.若超对称理论为真,"编外" 粒子确实存在 [1,2],那么玻色型反物质也可以产生反 氢原子 $P_{B}^{+1}\overline{U_{e,B}}$,其中 $P_{B}^{+1}\overline{U_{e,B}}$ 中含有 $P_{F}^{+1}\overline{e_{F}}^{-1}$ 的组分 及费米型矢量轻子 $l_{F,T}^{0}$,结构比较复杂.

费米型氘核 $P_F^{+1} n_F^0$ 结构函数的矩已有实验观测数据^[2],它是检验氘核结构函数的敏感试剂,文献 [2] 对费米型氘作了计算^[2],其理论与实验较好相符.

据超对称理论,若玻色型反质子、反中子确实存 在,从氘核 $P_B^{-1}n_B^0 与 P_F^{-1}n_F^0 和 l_{F,T}^2$ 间存在的相互关系, 可以算出 $P_B^{-1}n_B^0$ 结构函数的矩,理论值比 $P_F^{-1}n_F^0$ 结构 函数的矩要大一些,这是由于 $P_B^{-1}n_B^0$ 除了具有 $P_F^{-1}n_F^0$ 的组分外, $l_{F,T}^0$ 粒子对结构函数的贡献不可忽略.

1 超对称粒子的反氢原子结构

费米型氢原子由 1个质子和 1个电子构成,它表示为 $P_{F}^{i} e_{F}^{-1}$.反氢原子则由 1个反质子和 1个正电子 组成,它表示为 $P_{F}^{i} e_{F}^{-1}$,并先后被 CERN及费米实验 室观测到^[4].

由于质子 P_F^{+1} 的超对称伴子为 P_B^{+1} ,由玻色型的 反夸克 $y_{e,B}^{-\frac{2}{3}}$ $y_{e,B}^{+\frac{1}{3}}$ 组成 $.y_{e,B}^{-\frac{2}{3}}$ $y_{e,B}^{+\frac{1}{3}}$ 与 $u_F^{-\frac{2}{3}}$ $d_F^{-\frac{1}{3}}$ 的关系 为

$$\begin{cases} y_{e,\vec{B}}^{-\frac{2}{3}}(q_{2},\overline{b}_{c}) = \overline{u}_{F}^{+\frac{2}{3}}(\overline{q}_{1}\overline{b}_{c}\overline{g}) + l_{F,T}^{0}(\{q_{1},q_{2}\}g), \\ y_{e,\vec{B}}^{+\frac{1}{3}}(q_{1},\overline{b}_{c}) = \overline{d}_{F}^{-\frac{1}{3}}(\overline{q}_{2}\overline{b}_{c}\overline{g}) + l_{F,T}^{0}(\{q_{1},q_{2}\}g). \end{cases}$$
(1)

电子 $e^{\bar{p}^{-1}}$ 的超对称伴子是荷电微子 $U_{e,\bar{B}}(q_{1},\bar{g}),$ 其结构为

 $\begin{aligned} & \mathcal{U}_{e,B}^{-1}(q_{1},\bar{g}) = \bar{e}^{F^{1}}(\bar{q}_{2}\bar{g}\bar{g}) + l_{F,T}^{0}(\{q_{1},q_{2}\}g). \quad (2) \\ & \mathbf{h}(1), (2) \mathbf{I}, \mathbf{\eta} = \mathbf{h} \mathbf{h} \mathbf{h} \mathbf{h} \mathbf{h} \mathbf{h} \mathbf{h} \\ & P_{B}^{+1}(\bar{y}_{e,B}^{-\frac{2}{3}}\bar{y}_{e,B}^{-\frac{2}{3}} + \frac{1}{3}) \mathcal{U}_{e,B}^{-1}(q_{1},\bar{g}) = \end{aligned}$

 $P_{F}^{+1}\overline{e_{F}}^{-1}$ 反氢原子和玻色型 $P_{B}^{-1}\overline{U_{e}}, \overline{B}^{-1}$ 反氢原子 2个类型,后者含有 $P_{F}^{+1}\overline{e_{F}}^{-1}$ 的组分和 4个 $l_{F,T}^{0}$.

在很高能量下, *P*^a¹*U*^a^b, 原则上应能被发现,但 困难之处在于对 *l^p*, *r* 所产生效应的观测.

2 费米型氘核及玻色型氘核结构函数的矩

结构函数的矩是检验结构函数正确与否的敏感 试剂.已知费米型氘核由一个质子和一个中子 $P_F^{+1}n_F^0$ 构成,反氘也有费米型反氘 $P_F^{+1}n_F^0$ 和玻色型反氘 $P_B^{-1}n_B^0$ 2类.由于 CP破坏, $P_F^{-1}n_F^0$ 与 $P_B^{-1}n_B^0$ 间的对称性 有所偏离,但 $P_B^{-1}n_B^0$ 中含有 $P_F^{-1}n_F^0$ 的组分, $P_B^{-1}n_B^0$ 中也 含有 $P_F^{-1}n_F^0$,只要能给出 $P_F^{-1}n_B^0$ 和 $P_B^{-1}n_B^0$ 的结构函数, 算出结构函数的矩,便可判断理论正确与否.关于 P^F¹n^P结构函数的矩已有实验数据加以对比.

利用 (1) 式易得玻色型氘核 *P*_B¹*n*_B⁰和反氘核 *P*_B¹*n*_B⁰的结构为

由(4)和(5)式可见超对称玻色型反氘核由费米型反氘核与6个*l^p, r*轻子构成;玻色型氘核与费米型 氘核的关系亦然.若不考虑*^p, r*,则玻色型氘与费米 型氘等同,可与实验作对比.

如果能给出 P^r_F¹、n⁰_F及 3^p_{F,T}轻子集团的结构函数,则玻色型氘的结构函数表为

$$\begin{split} F^{D_{R_{2}}}_{2,F}(x,Q^{2}) &= [F^{e^{P}}_{2,F}(x,Q^{2}) + F^{e^{0}}_{2F,T}(x,Q^{2})] + \\ [F^{e^{0}}_{2,F}(x,Q^{2}) + F^{e^{0}}_{2F,T}(x,Q^{2})]. \end{split} \tag{6}$$

若不考虑 $F_{\mathcal{F},\tau}^{d^0}(x,Q^2)$ 的贡献,则玻色型氘核与费米型氘核的结构函数等同:

$$F_{2,F}^{\mathcal{D}_{B}}(x,Q^{2}) = F_{2,F}^{\mathcal{D}_{F}}(x,Q^{2}) = F_{2,F}^{e^{p}}(x,Q^{2}) = F_{2,F}^{e^{p}}(x,Q^{2}) + F_{2,F}^{e^{p}}(x,Q^{2}).$$
(7)

在亚夸克层次,n'个亚夸克构成的系统,动量分 布函数f(x)由 U函数表示^[5],x为动量分布分数.

$$f^{n'}(x) = \frac{\Gamma(n'W)}{\Gamma(U)\Gamma(n'W-U)} x^{U-1} (1-x)^{n'W-U-1}.$$
(8)

其中, $\Gamma(\dots)$ 为 Г函数.参数 W= $\frac{1}{2}$,U= $\frac{1}{2}$,对质子有 2个 q_1 ,1个 q_2 ,3个 b_c ,3个 g,n'= 9,中子有 1个 q_1 , 2个 q_2 ,3个 b_c ,3个 g,n'= 9;对 $3_{F,T}^{p}$ 的亚夸克集团有 3个 q_1 ,3个 q_2 ,3个 g,n'= 9.

对 (8) 式乘以 $\sum_{i} q^{2}x$, $\sum_{i} q^{2}$ 为对系统所含亚夸 克的电荷平方求和,得到质子 P_{F}^{1} ,中子 n_{F}^{0} 以及轻子 $l_{F,r}^{0}$ 集团的标度函数分别为

$$F_{2,F}^{ap}(x) = \frac{175}{96} x^{\frac{1}{2}} (1-x)^{3},$$

$$F_{2,F}^{ap}(x) = \frac{35}{24} x^{\frac{1}{2}} (1-x)^{3};$$
(9)

$$\sum_{F_{2,F}}^{\sum^{r} I_{F,T}^{0}} (x) = \frac{35}{16} x^{\frac{1}{2}} (1-x)^{3}.$$
 (10)

如果结构函数的标度破坏是来源于夸克或轻子 的形状因子,利用 Drell-yan关系,夸克 轻子的形状 因子为^[6]

$$G^{4}(Q^{2}) \sim (Q^{2})^{-\frac{1}{2}(n^{'WL U})}$$
. (11)
因夸克、轻子均为亚夸克的三体结构,故有

$$\begin{array}{l}
\vec{G}^{\hat{\pi}}(Q^{2}) = \vec{G}^{0}(Q^{2}) = (Q^{2})^{-\frac{1}{2}}. \quad (12) \\
\vec{E} \hat{G}^{\hat{\pi}}(Q^{2}) = [\vec{G}^{0}(Q^{2})] = [(1 + \frac{Q^{2}}{\Lambda^{2}})^{-\frac{1}{2}}]^{2}. \\
\end{array}$$

$$\begin{array}{l}
(12) \\
(12) \\
(12')
\end{array}$$

于是质子、中子、轻子集团的结构函数为 $F_{2,F}^{eP}(x,Q^2) = \frac{175}{96}(1-\frac{Q^2}{\Lambda^2})x^{\frac{1}{2}}(1-x)^3,$ $F_{2,F}^{eP}(x,Q^2) = \frac{35}{96}(1-\frac{Q^2}{\Lambda^2})x^{\frac{1}{2}}(1-x)^3,$ (1)

$$F_{2,F}^{ef^{0}}(x,Q^{2}) = \frac{35}{16}(1-\frac{Q^{2}}{\Lambda^{2}})x^{\frac{1}{2}}(1-x)^{\frac{1}{3}}, \quad (13)$$

$$F_{2,F}^{ef^{0}}(x,Q^{2}) = \frac{35}{16}(1-\frac{Q^{2}}{\Lambda^{2}})x^{\frac{1}{2}}(1-x)^{\frac{3}{3}}. \quad (14)$$

QCD理论的氘结构函数的矩为:

$$M_{2}(n, Q^{2}) = \int_{0}^{1} \frac{2t^{\mu}}{x^{3}} F_{2}^{D}(x, Q^{2}) \left(\left[(n^{2} + 2n + 3) + 3(n + 1) \right]_{0}^{1} + (\frac{4M^{2}x^{2}}{Q^{2}}) + n(n + 2) \frac{M^{2}x}{Q^{2}} \right]_{0}^{2} + n(n + 2) \frac{M^{2}x}{Q^{2}} dx \left[(n + 2)(n + 3) \right]_{0}^{1}$$
(15)
其中,

^a =
$$2x / (1 + 1 + \frac{4M^2 x^2}{Q^2}) \approx x - \frac{M^2 x^2}{Q^2}$$
.
_____(16)

利用 (6) 式,不计 $\sum_{I_{F,T}}$ 效应,有 $F_{2,F}^{D_{F}}(x,Q^{2}) = F_{2,F}^{P}(x,Q^{2}) + F_{2,F}^{m^{0}}(x,Q^{2})$.由 (13)式得费米型氘的结构函数为

$$F_{2,F}^{D}(x,Q^{2}) = 3.28(1-\frac{Q^{2}}{\Lambda^{2}})x^{\frac{1}{2}}(1-x)^{3}.$$
 (17)

由于在质子、中子体系内,夸克的动量分布函数 并非严格归一,为保证归一结果,(17)式的系数应由 3.28压低到 3.00.将(17)式代入(15)式,并考虑到 (16)式,计算得到的结果如表 1所示.图 1~ 图 3对 费米型氘 *D_F*结构函数的矩的计算结果与实验数据作 比较.从图 1~ 图 3可以看出,对于费米型氘核结构 函数的矩,理论计算结果与实验数据两者的相符程度 是令人满意的.

对于玻色型氘核结构函数的矩,则应考虑轻子 集团对结构函数的贡献.由(6)(13)(14)式得

$$F_{2,F}^{0}(x,Q^{2}) = [F_{2,F}^{e^{p}}(x,Q^{2}) + 3F_{2,F}^{d^{0}}(x,Q^{2})] + [F_{2,F}^{e^{n}}(x,Q^{2}) + 3F_{2,F}^{d^{0}}(x,Q^{2})] = 3.00(1 - \frac{Q^{2}}{\Lambda^{2}})x^{\frac{1}{2}}(1-x)^{3} + \frac{35}{8}(1-\frac{Q^{2}}{\Lambda^{2}})x^{\frac{1}{2}}(1-x)^{3} = 7.37(1-\frac{Q^{2}}{\Lambda^{2}})x^{\frac{1}{2}}(1-x)^{3}.$$
(18)

将(18)式代入(15)式,计算得到的结果如表 2 所示.图 1~图 3对玻色型氘 *D*^B结构函数的矩的计 算结果与实验数据作比较,从图 1~3可以看出,玻 色型氘核 *D*^B与费米型氘核 *D*^F结构函数的矩大不相 同,差异主要来源于费米型"编外"中性轻子集团对 D₈ 氘结构函数的贡献.

图 1 矩为 $M_2^{D_F}(2, Q^2)$ 的实验值与矩为 $M_2^{D_F}(2, Q^2)$. $M_2^{D_B}(2, Q^2)$ 的理论值对比

Fig. 1 The contrast between the experimental data of the moment of $M_2^{p_F}(2, Q^2)$ and the theoretical values of those of $M_2^{p_F}(2, Q^2)$ and $M_2^{p_B}(2, Q^2)$

 $-- \cdot | --: D_F$ 的 $M_2^{D_F}(2, Q^2)$ 实验值,—: 理论值; - · - · -: D_B 的 $M_2^{D_B}(2, Q^2)$ 理论值

 $|--\circ| - -: M_{2^F}^{\mathcal{D}_F}(2, Q^2)$ experimental data of D_F , --:The theoretical values, $-\circ - \circ -: M_{2^B}^{\mathcal{D}_B}(2, Q^2)$ theoretical values

图 2 矩为 $M_2^{p_F}(4, Q^2)$ 的实验值与矩为 $M_2^{p_F}(4, Q^2)$. $M_2^{p_B}(4, Q^2)$ 的理论值对比

Fig. 2 The contrast between the experimental data of the moment of $M_2^{p_F}(4, Q^2)$ and the theoretical values of those of $M_2^{p_F}(4, Q^2)$ and $M_2^{p_B}(4, Q^2)$

 $|--\circ| - -: M_{2^F}^{\mathcal{D}_F}(4, Q^2)$ experimental data of D_F , --:The theoretical values, $-\circ -\circ -: M_{2^B}^{\mathcal{D}_B}(4, Q^2)$ theoretical values

图 3 矩为 $M_2^{p_F}(6, Q^2)$ 的实验值与矩为 $M_2^{p_F}(6, Q^2)$. $M_2^{p_B}(6, Q^2)$ 的理论值对比

Fig. 3 The contrast between the experimental data of the Moment of $M_2^{p_F}(6, Q^2)$ and the theoretical values of those of $M_2^{p_F}(6, Q^2)$ and $M_2^{p_B}(6, Q^2)$

 $- \overset{g}{=} - : D_F$ 的 $M_2^{D_F}(6, Q^2)$ 实验值,——:理论值; - - - : D_B 的 $M_2^{D_B}(6, Q^2)$ 理论值

 $-- - P = -: M_{2F}^{0}(6, Q^2)$ experimental data of D_F ,: The theoretical values, $- \circ - -: M_{2B}^{0}(6, Q^2)$ theoretical values

表 1 费米型氘 D_F 结构函数的矩

Table 1 The moment of the structure function of deuteron D_F of Fermi type

$n,\Lambda^2(\text{GeV})$	² 2		3	4	6	8
2, 569	0. 319	04 0.3	3184 0.	3151	0. 3112	0.3082
4, 57. 41	0. 039	0. 0	0382 0.	0367	0. 0323	0.0278
6, 41. 75	0. 012	27 0. (0098 0.	0095	0. 0084	0.0072
$\overline{n,\Lambda^2(\text{GeV})^2}$	10	20	30	40	50	100
2, 569	0. 3061	0. 2982	0. 2924	0. 2873	0. 2824	0. 2608
4, 57. 41	0. 0272	0.0237	0.0211	0.0189	0. 0171	0. 0117
6, 41. 75	0. 0060	0.0053	0.0046	0.0041	0. 0036	0. 0024

表 2 玻色型氘 D_B结构函数的矩

Table 2 The moment of the structure function of deuteron D_B of Bose type

$n,\Lambda^2(\text{GeV})^2$	2 2		3	4	6	8
2, 569	0. 785	57 O. 1	7833 0.	. 7752	0. 7656	0.7582
4, 57. 41	0. 095	59 0. (0940 0.	. 0903	0. 0795	0.0684
6, 41. 75	0. 031	12 0. (0241 0.	. 0234	0. 0207	0.0177
$n,\Lambda^2(\text{GeV})^2$	10	20	30	40	50	100
2, 569	0. 7470	0.7336	0.7203	0.7068	0. 6948	0. 6419
4, 57. 41	0. 0669	0.0583	0.0519	0.0465	0. 0421	0. 0288
6, 41. 75	0. 0148	0.0130	0.0113	0.0101	0. 0089	0. 0059

3 结束语

本文根据超对称理论,讨论了反氢原子的结构 和计算费米型氘核 *P*^{F¹n^P},以及玻色型氘核 *P*^{S¹n⁰}结

(上接第 24页 Continue from page 24)

相同的,但各个子能级的占有几率不同,从而导致磁 光 Faraday旋转.晶场的作用使得自由稀土离子的 5d 能级产生较大的劈裂,以致 4f和 5d态的晶场能级差 与入射光子能量 h k 相差的不是太远,否则不会产生 大的磁光偏转.可见晶场的大小对磁光效应影响很 大,选择合适的晶体材料,使置入其中的稀土离子受 到较强的晶体场作用是必要的.交换作用使晶场能级 进一步劈裂或混合是产生磁光效应的关键,它导致粒 子的基态占有几率不同.所以,较强的交换作用对产 生较强的磁光效应有利.

参考文献:

- Gomi M, K Satoh H, Furuyama. et al. Sputter deposition of Ce-substituted iron garnet films with giant magnetooptical effect[J]. IEEE Trans Magn(in Japan), 1990, 5 294.
- [2] Higuchi S, Ueda K, Yahiro F, et al. Fabrications of Cerium-substituted YIG thin films for magnetic field sensor by pulsed-laser deposition [J]. IEEE Trans Magn, 2001, 37 2451.

构函数的矩,结果发现反氢原子的结构与目前观测到 费米型反氢原子不同,氘核 $P_F^{-1}n_F^{0}$ 结构函数的矩的理 论值与实验数据较好相符, $P_B^{-1}n_B^{0}$ 结构函数的矩的计 算结果比 $P_F^{-1}n_F^{0}$ 要大,这是由于 $P_B^{-1}n_B^{0}$ 除了具有 $P_F^{-1}n_F^{0}$ 的组分外, $P_{F,T}$ 粒子对结构函数的贡献不可忽 略.

参考文献:

- [1] 焦善庆,唐 敏.在亚夸克模型中的新粒子族系[J].云 南工学院学报,1990,8(2): 87-96.
- [2] 焦善庆,兰其开.亚夸克理论[M].重庆:重庆出版社, 1996.191,159.
- [3] 焦善庆,江光佐,兰其开.编内费米子反物质和"编外"玻 色子反物质对称性的讨论[J].江西师范大学学报(自然 科学版),2002,26(4):288-293.
- [4] 费米实验室.费米实验室探测到反氢原子肯定了 1996
 年 CERN对反氢的观测实验[J]. CERN Courier, 1997,
 1 21.
- [5] 焦善庆.价.海亚夸克混合模型的 U-分布, Γ 分布 [J]. 云南大学学报(自然科学版), 2002, 24(1): 34-37.
- [6] 焦善庆.夸克集团的形状因子和结构函数[C].全国高能物理会议文集.济南:山东大学出版社,1980.64-67.

(责任编辑:黎贞崇)

- [3] Zhang G Y, Xu Y, Yang J H. The influence of the admixing of different multiples on the spin magnetic moment and Faraday effect of rare earth ions in garnets [J]. Acta Phys Sinica, 1994, 3 608.
- [4] 丁石孙.解析几何 [M].北京:人民教育出版社,1978. 151.
- [5] Condon E U, Shortley G H. The Theory of Atomic Spectra[M]. Cambridge Cambridge University, 1951.
- [6] Freiser M J. A Survey of Magneto optic Effects [J].
 IEEE Trans Magn, 1968, MAG-4(2): 152.
- [7] 张国营,杨杰惠,徐 游.稀土石榴石晶体磁光效应微观 机制研究[J].南京大学学报,1993,29 586.
- [8] Xu Y, Zhang G Y, Duan M Q. Calculations of the Faraday rotation in Re-substituted iron garnets [J]. J Appl Phys, 1993, 73: 6133.
- [9] Xu Y, Yang J H, Zhang G Y. A theoretical investigation on the magneto-optical spectra of Ce-substituted yttrium aluminium garnet [J]. J Phys Condense Matter, 1995, 7 6151.

(责任编辑:黎贞崇)