Characteristics of Open Subtrees Without Periodic Points of A Tree Map树映射中不含周期点的开子树的特征

Zhang Yongping Zhang Xiaoyan Xu Shengrong Sun Taixiang
张永平
张晓燕
徐胜荣 孙太祥

（Coll．of Math．\＆Info．Sci．，Guangxi Univ．， 100 Daxuelu，Nanning，Guangxi，530004，China）
（广西大学数学与信息科学学院 南宁市大学路 100 号 530004）

Abstract

Let T be a tree and f be a continuous map from T into itself．Some properties of open subtrees of T without periodic points of f are discussed．

Key words tree map，ω－limit set，open subtree，recurrent point，non－wandering set
摘要 讨论 T 是树且 f 是 T 的连续自映射时，T 中不含 f 周期点的开子树的一些性质．
关键词 树映射 开子树 ω－极限集 回归点 非游荡集
中图法分类号 0189.11

1 Introduction

In this paper，let N be the set of all natural num－ bers．Write $Z^{+}=N \bigcup\{0\}, N_{n}=\{1,2, \cdots, n\}$ and $Z_{n}=$ $\{0\} \cup N_{n}$ for any $n \in N$ ．

Let T be a tree（i．e．an one－dimensional compact connected branched manifold without cycles）．A subtree of T is a subset of T ，which is a tree itself．For any $x \in T$ ， denote by $V(x)$ the number of connected components of T $-\{x\} . B(T)=\{x \in T: V(x) \geqslant 3\}$ is called the set of branched points of T and $E(T)=\{x \in T: V(x)=1\}$ is called the set of end points of T ．Let $N E(T)$ be the num－ ber of end points of T ．Let $A \subset T$ ，we use $A, A,[A]$ and \＃（ A ）to denote the closure of A ，the interior of A ，the smallest subtree of T containing A and the number of points in A respectively．For any $x, y \in T$ ，we shall use $[x, y]$ to denote $[\{x, y\}]$ ．Define $(x, y]=[x, y]-\{x\}$ and $(x$ ， $y)=(x, y]-\{y\}$ ．For any $x \in T$ and any $\varepsilon>0$ ， write $B(x, \varepsilon)=\{y \in T: d(x, y)<\varepsilon\}$ and $B_{1}(x, \varepsilon)$ ， $B_{2}(x, \varepsilon), \cdots, B_{V}(x)(x, \varepsilon)$ be connected components of $B(x, \varepsilon)-\{x\}$ ．

Let $C^{0}(T)$ be the set of all continuous maps from T to itself．For any $f \in C^{0}(T)$ and any $x \in T$ ，the set of fixed

[^0]points of f ，the set of m－periodic points of f ，the ω－limit set of x ，the set of non－wandering points of f will be denot－ ed by $F(f), P_{m}(f), \omega(x, f), \Omega(f)$ respectively．Write $O(x, f)=\left\{f^{k}(x): k \in Z^{+}\right\}$and $P(f)$ $=\bigcup_{m=1}^{\infty} P_{m}(f)$ ．

Block and Coven in Reference［ 1］studied some properties of open subintervals of［ 0,1$]$ without periodic points of $f \in C^{0}([0,1])$ and obtained the following theo－ rem．

Theorem A Let $f \in C^{0}([0,1])$ ．
（1）If $x \in \Omega(f)-\overline{P(f)}$ ，then there exists a $\delta>$ 0 such that，for any $\varepsilon \in(0, \delta)$ we have $J \cap f^{n}\left(J_{1}\right)=\varphi$ for all $n>0$ ，where $J=[x-\varepsilon, x+\varepsilon]$ and J_{1} denotes exactly one of $[x, x+\varepsilon],[x-\varepsilon, x]$ ．
（2）Let J be an open subinterval of $[0,1]$ which contains no periodic point of f ．Then
（i）J contains at most one point of any limit set $\omega(x)$ ．
（ii ）if $x \in J$ is non－wandering，then no other point of its trajectory lies in J ．

In this note，we extend Theorem A to a tree map and obtain the following two theorems．

Theorem 1 Let $f \in C^{0}(T)$ and $m=V(x)$ ．If x $\in \Omega(f)-\overline{P(f)}$ ，then there exist a $\delta>0$ and $j \in N_{m}$ such that

$$
B(x, \delta) \cap f^{n}\left(B_{j}(x, \delta)\right)=\varphi \text { for all } n \in N .
$$

Theorem 2 Let $f \in C^{0}(T), U \subset T-\overline{P(f)}$ be an open subtree and $s=N E(U)$. Then
(1) for any $x \in T$, \# $(U \cap \omega(x, f)) \leqslant s-1$.
(2) for any $x \in \Omega(f)$, $\#(U \cap O(x, f)) \leqslant s-$ 1.

2 Some Lemmas

To prove the main theorems, we first give some lemmas.

Lemma $1^{[1]}$ Let $f \in C^{0}(T)$. If there exist $x, y \in$ T such that $[x, y] \subset[f(x), f(y)]$, then $[x, y] \cap$ $F(f) \neq \varphi$

Lemma 2 Let $f \in C^{0}(T)$ and $U \subset T-\overline{P(f)}$ be an open subtree. Suppose $x \in U$ such that $f^{n}(x) \in U$ for some $m \in N$. If V is a connected component of
$U-\{x\}$ containing no $f^{m}(x)$, then $V \cap O(x, f)=$ φ.

Proof We first show that for any $k \in N, f^{k m}(x)$ belongs to the connected component W of $T-\{x\}$ containing $f^{n}(x)$.

Assume on the contrary that for some $s \in N, f^{m}(x)$ $\notin W$. Let $k=\min \left\{s: f^{m}(x) \notin W\right\}$. Then we have $x \in\left[f^{(k-1) m}(x), f^{k m}(x)\right] \subset f^{(k-1) m}\left[x, f^{m}(x)\right]$.

So there exists a point $\zeta \in\left[x, f^{m}(x)\right]$ such that $f^{k m}(\zeta)=f^{m}(x)$. By Lemma 1, it follows that $[x, \zeta] \cap$ $F\left(f^{k m}\right) \neq \varphi$. This is a contradiction.

Now we show $V \bigcap O(x, f)=\varphi$.
Assume on the contrary that $V \cap O(x, f) \neq$ φ. Then there exists a $n \in N$ such that $f^{n}(x) \in V$. From the above we know that $f^{k n}(x) \in V$ for any $k \in$ N. Therefore, $f^{n n}(x) \in W \bigcap V=\varphi$. This is a contradiction.

Lemma $3^{[2]}$ Let $f \in C^{0}(T)$ and U be a subtree. Let $x_{1}, x_{2}, \cdots, x_{m}$ be m boundary points of U. If $\left[x_{i}\right.$, $\left.f\left(x_{i}\right)\right] \cap U \neq \varphi$ for each $i \in N_{m}$, then $U \cap F(f) \neq$ φ.

3 The Proof of the Main Theorems

Proof of Theorem 1 Since $x \in \Omega(f)-\overline{P(f)}$, we can take $\varepsilon_{0}>0$ such that $B\left(x, \varepsilon_{0}\right) \cap P(f)=\varphi$ and $B\left(x, \varepsilon_{0}\right) \cap B(T) \subset\{x\}$. By Lemma 2. 1 in Reference [3], it follows that there exist points $x_{k} \rightarrow x$ in T and nat ${ }^{-}$ ural numbers $n_{k} \rightarrow \infty$ such that $f^{n} k\left(x_{k}\right)=x$ for all $k \in N$. Without loss of generality, we can suppose $x_{k} \in B(x$, $\left.\varepsilon_{0}\right)$ for all $k \in N$.

Caim 1 There at least exists a $i \in N_{m}$, such that $\left\{x_{k}\right\} \cap B_{i}\left(x, \varepsilon_{0}\right)=\varphi$.

Assume on the contrary that for each $i \in N_{m},\left\{x_{k}\right\} \cap$ $B_{i}\left(x, \varepsilon_{0}\right) \neq \varphi$. Let $y_{i} \in\left\{x_{k}\right\} \cap B_{i}\left(x, \varepsilon_{0}\right)$ and $f^{k_{i}}\left(y_{i}\right)$ $=x$ for some $k_{i} \in N$. By Lemma 2, there exist some n $\in N$ such that $\left[f^{n}\left(y_{i}\right), y_{i}\right] \cap\left[y_{i}, x\right] \neq \varphi$ for each $i \in$ N_{m}, it follows from Lemma 3 that $B\left(x, \varepsilon_{0}\right) \cap P(f) \neq$ φ. This is a contradiction.

Without loss of generality, we may suppose that $B_{i}\left(x, \varepsilon_{0}\right) \cap\left\{x_{k}\right\} \neq \varphi$ for $1 \leqslant i \leqslant l$ and $B_{i}\left(x, \varepsilon_{0}\right) \cap$ $\left\{x_{k}\right\}=\varphi$ for $l+1 \leqslant i \leqslant m$. It follows from Lemma 2 and Lemma 3 that there exist some $l+1 \leqslant \lambda \leqslant m$ such that $B_{j}\left(x, \varepsilon_{0}\right) \cap f^{\prime}\left(B \lambda\left(x, \varepsilon_{0}\right)\right)=\varphi$ for all $n \in N$ and each $j \in N_{m}-\{\lambda\}$. We may suppose that if $l+1 \leqslant h \leqslant \lambda \leqslant$ m, then $B_{j}\left(x, \varepsilon_{0}\right) \cap f^{n}\left(B_{\lambda}\left(x, \varepsilon_{0}\right)\right)=\varphi$ for all $n \in N$ and each $j \in N_{m}-\{\lambda\}$.

Qaim 2 There exist some $h \leqslant \lambda \leqslant m$ and a $\varepsilon_{1} \in$ $\left(0, \varepsilon_{0}\right)$ such that

$$
f^{n}\left(B \lambda\left(x, \varepsilon_{1}\right)\right) \cap B \lambda\left(x, \varepsilon_{1}\right)=\varphi \text { for all } n \in N
$$

Assume on the contrary that for each $h \leqslant j \leqslant m$ and any $\varepsilon \in\left(0, \varepsilon_{0}\right)$,
$f^{m}\left(B_{j}\left(x, \varepsilon_{0}\right)\right) \cap B_{j}\left(x, \varepsilon_{0}\right) \neq \varphi$ for some $m_{j} \in N$. Then, by Proposition IV. 6 in Reference [1] and the remark following its proof, for each $h \leqslant j \leqslant m$, there exist a point $y_{j} \in T$ and a sequence of integers $m_{k}^{j} \rightarrow \infty$ such that $f^{n n_{k+1}^{j}}\left(y_{j}\right) \in\left(x, f^{m n_{k}^{j}}\left(y_{j}\right)\right)$ for all $k \in N$ and $f^{m^{j} k}\left(y_{j}\right)$ $\rightarrow x$ as $k \rightarrow \infty$. Thus, it follows from Lemma 2 and Lemma 3 that $B\left(x, \varepsilon_{0}\right) \cap P(f) \neq \varphi$. This is a contradiction.

Take $\delta=\varepsilon_{1}$, by Claim 2, we have that
$f^{\prime \prime}(B \lambda(x, \delta)) \cap B(x, \delta)=\varphi$ for all $n \in N$.
Proof of Theorem 2 (1) Put \#($U \cap \omega(x, f)$) $=k$, then $k \neq \infty$. Otherwise there exists some component of $U-B(T)$ containing infinite points of $\omega(x, f)$, which is impossible. Therefore there exist k pairwise disjoint open connected subsets, denoted by $U_{1}, U_{2}, \cdots, U_{k}$, such that every $U_{i}\left(i \in N_{k}\right)$ is contained in one of the connected components of $U-\{B(T) \cup E(T)\}$ and every $U_{i}\left(i \in N_{k}\right)$ contains infinite points of $O(x, f)$. Now we prove (1) of Theorem 2 by induction.
(i) If $s=2$, it is clear that $k \leqslant 1$.
(ii) Assume that (1) of Theorem 2 holds for $2 \leqslant s$ $\leqslant m$, that is to say $k \leqslant s-1$. Now we show that (1) of Theorem 2 holds for $s=m+1$.

Let $y_{1}, y_{2}, \cdots, y_{s}$ be the end points of U and z_{i} be the nearest branched point to y_{i} for each $i \in N_{s}$ ．

Claim 3 There must exists a $i \in N_{s}$ such that（ y_{i} ， $\left.z_{i}\right) \bigcap\left(\bigcup_{j=1}^{k} U_{j}\right)=\varphi$ ．

Assume on the contrary that for each $j \in N_{s}$ ，we have some $U_{j} \subset\left(y_{j}, z_{j}\right)$ ．For any $f^{\prime}(x), f^{\lambda}(x) \in U_{j}$ with $l, \lambda \in N$ ，if $l<\lambda$ ，then $f^{l}(x) \in\left(f^{\lambda}(x), y_{j}\right)$ ．In fact， if $f^{\lambda}(x) \in\left(f^{\prime}(x), y_{j}\right)$, put $a=f^{\prime}(x)$, then $f^{\lambda}(x)=$ $f^{\lambda-l}(a)$ ．By Lemma 2，we know that $\bigcup_{i \neq j} U_{i} \cap O(x, f)=$ φ ，which is a contradiction．

For each $i \in N_{s}$ ，choose $\lambda_{i}>l_{i}$ with $\lambda_{i}, l_{i} \in N$ and $f^{\lambda}(x), f^{d}(x) \in U_{i}$ ．Since $f^{d}(x) \in\left(f^{\lambda}(x), y_{i}\right)$ ，by Lemma 2，we have

$$
\left[f^{k\left(\lambda_{i}-l_{i}\right)}\left(f^{d_{i}}(x)\right), f^{d_{i}}(x)\right] \cap\left[f^{b_{i}}(x), f^{\lambda_{i}}(x)\right] \neq \varphi
$$ for all $k \in N$ ．

However，it follows from Lemma 3 that $U \bigcap P(f) \neq \varphi$ ， which contradicts to $U \cap P(f)=\varphi$ ．

Without loss of generality，we may assume that（ y_{1} ， $\left.z_{1}\right) \cap\left(\bigcup_{j=1}^{k} U_{j}\right)=\varphi, X_{1}=\left(y_{1}, z_{1}\right), X_{2}, \cdots, X_{l}$ are l con$^{-}$ nected components of $U-\left\{z_{1}\right\}$ and $k_{i}=N E\left(X_{i}\right)(i \in$ $\left.N_{l}\right)$ ．Then we have

$$
1+k_{2}-1+k_{3}-1+\cdots+k_{l}-1=s
$$

and

$$
k_{i} \leqslant s-1, i \in(2,3, \cdots, l\}
$$

For each $i \in\{2,3, \cdots, l\}$ ，let s_{i} be the number of U_{j} in X_{i} ．By the inductive hypothesis，we know $s_{i} \leqslant k_{i}-$ 1．Therefore

$$
k=s_{2}+s_{3}+\cdots+s_{l} \leqslant k_{2}-1+k_{3}-1+\cdots+
$$

$$
k_{l}-1=s-1=m
$$

This completes the proof of（1）of Theorem．
（2）For any $x \in \Omega(f)$ ，there exist points $x_{k} \rightarrow x$ and integers $n_{k} \rightarrow \infty$ such that $f^{n_{k}}\left(x_{k}\right)=x$ ．It is clear that for any $i \in N$ ，we have

$$
f^{\dot{j}}\left(x_{k}\right) \rightarrow f^{i}(x) \text { and } f^{k}\left(f^{\dot{b}}\left(x_{k}\right)\right)=f^{i}(x)
$$

Put \＃$(U \cap O(x, f))=r$ ，then $r \neq \infty$ ．Other－ wise there exists some component of $U-B(T)$ containing infinite points of $O(x, f)$ ，which is impossible．Let $f^{m_{1}}(x), f^{m_{2}}(x), \cdots, f^{m_{r}}(x)$ be r points of $U \cap O(x, f)$ ．Thus there exist r pairwise disjoint open connected sub－ sets，denoted by $U_{1}, U_{2}, \cdots, U_{r}$ ，such that every U_{i} whose an end is $f^{m_{i}}(x)\left(i \in N_{r}\right)$ is contained in one of the con－
nected components of $U-\{B(T) \bigcup E(T)\}$ and every $U_{i}\left(i \in N_{r}\right)$ contains infinite points of $\left\{f^{n_{i}}\left(x_{k}\right)\right\}$ ．By tak－ ing a subsequence，we may assume that for each $i \in N_{r}$ and each $k \in N, f^{m_{i}}\left(x_{k+1}\right) \in\left(f^{m_{i}}(x), f^{m_{i}}\left(x_{k}\right)\right) \subset U_{i}$ ． Now we will prove（2）of Theorem 2 by induction．
（i）If $s=2$ ，it is clear that $r \leqslant 1$ ．
（ii）Assume that（2）of Theorem 2 holds for $2 \leqslant s$ $\leqslant m$ ，that is to say $r \leqslant s-1$ ．Now we show that（2）of Theorem holds for $s=m+1$ ．

Let $y_{1}, y_{2}, \cdots, y_{s}$ be the end points of U and z_{i} be the nearest branched point to y_{i} for each $i \in N_{s}$ ．

Claim 4 There must exists a $i \in N_{s}$ such that（ y_{i} ， $\left.z_{i}\right) \bigcap\left(\bigcup_{j=1}^{r} U_{j}\right)=\varphi$ ．

Assume on the contrary that for each $j \in N_{s}$ ，we have some $U_{j} \subset\left(y_{j}, z_{j}\right)$ ．By Lemma 3，we have that $f^{n}{ }_{j}\left(x_{k}\right) \in\left(f^{n}{ }_{j}(x), y_{j}\right)$ and $\left(f^{n}{ }_{j}\left(x_{k}\right), f^{n}{ }_{j}(x)\right) \cap$ $\left(f^{m}\left(x_{k}\right), f^{s m_{j}}\left(x_{k}\right)\right) \neq \varphi$ for each $s, k \in N$ and each $i \in$ N_{s} ．Thus，it follows from Lemma 3 that $U \cap P(f) \neq \varphi$ ．This is a contradiction．

Without loss of generality，we may assume that $\left(y_{1}\right.$ ， $\left.z_{1}\right) \cap\left(\bigcup_{j=1}^{r} U_{j}\right)=\varphi, X_{1}=\left(y_{1}, z_{1}\right), X_{2}, \cdots, X_{l}$ are l con $^{-}$ nected components of $U-\left\{z_{1}\right\}$ and $k_{i}=N E\left(X_{i}\right)(i \in$ $\left.N_{l}\right)$ ．Then we have

$$
1+k_{2}-1+k_{3}-1+\cdots+k_{l}-1=s
$$

and

$$
k_{i} \leqslant s-1, i \in\{2,3, \cdots, l\}
$$

For each $i \in\{2,3, \cdots, l\}$ ，let s_{i} be the number of U_{j} in X_{i} ．By the inductive hypothesis，we know $s_{i} \leqslant k_{i}-1$ ． Therefore

$$
r=s_{2}+s_{3}+\cdots+s_{l} \leqslant k_{2}-1+k_{3}-1+\cdots+
$$

$$
k_{l}-1=s-1=m
$$

This completes the proof of（2）of Theorem．

References

1 Block L，Coppel W A．Dynamics in one－dimension．Lee Notes in Math Berlin：Springer－Verlag， 1992.
2 Blokh A M．Trees with snowflakes and zero entropy maps． Topology，1994，33： 379396.
3 Huang W，Ye X．Nonwandering points of a tree map under iter－ ations．Scinece in China，2000，30： 690698.
4 SunT．Unstable manifolds，non－wandering sets and topo－ logical entropy of tree maps．Acta Mathematica Sinica，2002， 45： 647654 （in Chinese）．
（责任编辑：蒋汉明 邓大玉）

[^0]: 2004－04－23 收稿．
 ＊Project supported by NNSF of China（10361001）and NSF of Guangxi （0447004）．

