Characteristics of Open Subtrees Without Periodic Points of A Tree Map^{*} 树映射中不含周期点的开子树的特征

Zhang Yongping	Zhang Xiaoyan	Xu Shengrong	Sun Taixiang
张永平	张晓燕	徐胜荣	孙太祥

(Coll. of Math. & Info. Sci., Guangxi Univ., 100 Daxuelu, Nanning, Guangxi, 530004, China) (广西大学数学与信息科学学院 南宁市大学路 100 号 530004)

Abstract Let T be a tree and f be a continuous map from T into itself. Some properties of open subtrees of T without periodic points of f are discussed.

Key words tree map, ω - limit set, open subtree, recurrent point, non-wandering set 摘要 讨论 *T* 是树且*f* 是 *T* 的连续自映射时, *T* 中不含*f* 周期点的开子树的一些性质. 关键词 树映射 开子树 ω - 极限集 回归点 非游荡集 中图法分类号 0189.11

1 Introduction

In this paper, let N be the set of all natural numbers. Write $Z^+ = N \bigcup \{0\}, N_n = \{1, 2, \dots, n\}$ and $Z_n = \{0\} \bigcup N_n$ for any $n \in N$.

Let T be a tree (i.e. an one-dimensional compact connected branched manifold without cycles). A subtree of T is a subset of T, which is a tree itself. For any $x \in T$, denote by V(x) the number of connected components of T $- \{x\}$. $B(T) = \{x \in T: V(x) \ge 3\}$ is called the set of branched points of T and $E(T) = \{x \in T: V(x) = 1\}$ is called the set of end points of T. Let NE(T) be the number of end points of T. Let $A \subseteq T$, we use $\overline{A}, \overline{A}, [A]$ and #(A) to denote the closure of A, the interior of A, the smallest subtree of T containing A and the number of points in A respectively. For any $x, y \in T$, we shall use [x, y] to denote $[\{x, y\}]$. Define $(x, y] = [x, y] - \{x\}$ and $(x, y) = [x, y] - \{x\}$ $(y) = (x, y] - \{y\}$. For any $x \in T$ and any $\varepsilon > 0$, write $B(x, \varepsilon) = \{ y \in T_i \ d(x, y) < \varepsilon \}$ and $B_1(x, \varepsilon)$, $B_2(x, \varepsilon), \dots, B_V(x)(x, \varepsilon)$ be connected components of $B(x, \varepsilon) - \{x\}.$

Let $C^0(T)$ be the set of all continuous maps from T to itself. For any $f \in C^0(T)$ and any $x \in T$, the set of fixed points of f, the set of m- periodic points of f, the ω - limit set of x, the set of non-wandering points of f will be denoted by F(f), $P_m(f)$, $\omega(x, f)$, $\Omega(f)$ respectively. Write $O(x, f) = \{f^k(x): k \in Z^+\}$ and $P(f) = \bigcup_{m=1}^{\infty} P_m(f)$.

Block and Coven in Reference [1] studied some properties of open subintervals of [0, 1] without periodic points of $f \in C^0$ ([0, 1]) and obtained the following theorem.

Theorem A Let $f \in C^0([0, 1])$.

(1) If $x \in \Omega(f) - \overline{P(f)}$, then there exists a $\mathfrak{d} \mathfrak{d} \mathfrak{d}$ 0 such that, for any $\mathfrak{e} \in (0, \mathfrak{d})$ we have $J \cap f^{\mathfrak{n}}(J_1) = \mathfrak{p}$ for all n > 0, where $J = [x - \mathfrak{e}, x + \mathfrak{e}]$ and J_1 denotes exactly one of $[x, x + \mathfrak{e}], [x - \mathfrak{e}, x]$.

(2) Let J be an open subinterval of [0, 1] which contains no periodic point of f. Then

(i) J contains at most one point of any limit set $\omega(x)$.

(ii) if $x \in J$ is non-wandering, then no other point of its trajectory lies in J.

In this note, we extend Theorem A to a tree map and obtain the following two theorems.

Theorem 1 Let $f \in C^0(T)$ and m = V(x). If $x \in \Omega(f) - \overline{P(f)}$, then there exist a $\delta > 0$ and $j \in N_m$ such that

 $B(x, \delta) \cap f^{n}(B_{j}(x, \delta)) = \varphi$ for all $n \in N$.

²⁰⁰⁴⁻⁰⁴⁻²³ 收稿.

 $^{^{\}ast}$ Project supported by NNSF of China (10361001) and NSF of Guangxi (0447004).

Theorem 2 Let $f \in C^0(T)$, $U \subset T - \overline{P(f)}$ be an open subtree and s = NE(U). Then

(1) for any $x \in T$, $\#(U \cap \omega(x, f)) \leq s - 1$.

(2) for any $x \in \Omega(f)$, $\#(U \cap O(x, f)) \leq s -$

1.

2 Some Lemmas

To prove the main theorems, we first give some lemmas.

Lemma 1^[1] Let $f \in C^0(T)$. If there exist $x, y \in T$ such that $[x, y] \subset [f(x), f(y)]$, then $[x, y] \cap F(f) \neq \varphi$

Lemma 2 Let $f \in C^0(T)$ and $U \subseteq T - \overline{P(f)}$ be an open subtree. Suppose $x \in U$ such that $f^n(x) \in U$ for some $m \in N$. If V is a connected component of $U - \{x\}$ containing no $f^n(x)$, then $V \cap O(x, f) = \varphi$.

Proof We first show that for any $k \in N$, $f^{km}(x)$ belongs to the connected component W of $T - \{x\}$ containing $f^m(x)$.

Assume on the contrary that for some $s \in N$, $f^{sm}(x) \notin W$. Let $k = \min\{s, f^{sm}(x) \notin W\}$. Then we have $x \in [f^{(k-1)m}(x), f^{km}(x)] \subset f^{(k-1)m}[x, f^{m}(x)]$.

So there exists a point $\zeta \in [x, f^m(x)]$ such that $f^{km}(\zeta) = f^m(x)$. By Lemma 1, it follows that $[x, \zeta] \cap F(f^{km}) \neq \varphi$. This is a contradiction.

Now we show $V \cap O(x, f) = \varphi$.

Assume on the contrary that $V \cap O(x, f) \neq \varphi$. Then there exists a $n \in N$ such that $f^{n}(x) \in V$. From the above we know that $f^{kn}(x) \in V$ for any $k \in N$. Therefore, $f^{mn}(x) \in W \cap V = \varphi$. This is a contradiction.

Lemma 3^[2] Let $f \in C^0(T)$ and U be a subtree. Let x_1, x_2, \dots, x_m be m boundary points of U. If $[x_i, f(x_i)] \cap U \neq \varphi$ for each $i \in N_m$, then $U \cap F(f) \neq \varphi$.

3 The Proof of the Main Theorems

Proof of Theorem 1 Since $x \in \Omega(f) - \overline{P(f)}$, we can take $\varepsilon_0 > 0$ such that $B(x, \varepsilon_0) \cap P(f) = \varphi$ and $B(x, \varepsilon_0) \cap B(T) \subset \{x\}$. By Lemma 2.1 in Reference [3], it follows that there exist points $x_k \rightarrow x$ in T and natural numbers $n_k \rightarrow \infty$ such that $f^{n_k}(x_k) = x$ for all $k \in N$. Without loss of generality, we can suppose $x_k \in B(x, \varepsilon_0)$ for all $k \in N$.

Claim 1 There at least exists a $i \in N_m$, such that $\{x_k\} \cap B_i(x, \varepsilon_0) = \varphi$.

Assume on the contrary that for each $i \in N_m$, $\{x_k\} \cap B_i(x, \varepsilon_0) \neq \varphi$. Let $y_i \in \{x_k\} \cap B_i(x, \varepsilon_0)$ and $f^{k_i}(y_i) = x$ for some $k_i \in N$. By Lemma 2, there exist some $n \in N$ such that $[f^n(y_i), y_i] \cap [y_i, x] \neq \varphi$ for each $i \in N_m$, it follows from Lemma 3 that $B(x, \varepsilon_0) \cap P(f) \neq \varphi$. This is a contradiction.

Without loss of generality, we may suppose that $B_i(x, \epsilon_0) \cap \{x_k\} \neq \varphi$ for $1 \leq i \leq l$ and $B_i(x, \epsilon_0) \cap \{x_k\} = \varphi$ for $l+1 \leq i \leq m$. It follows from Lemma 2 and Lemma 3 that there exist some $l+1 \leq \lambda \leq m$ such that $B_j(x, \epsilon_0) \cap f^n(B_\lambda(x, \epsilon_0)) = \varphi$ for all $n \in N$ and each $j \in N_m - \{\lambda\}$. We may suppose that if $l+1 \leq h \leq \lambda \leq m$, then $B_j(x, \epsilon_0) \cap f^n(B_\lambda(x, \epsilon_0)) = \varphi$ for all $n \in N$ and each $j \in N_m - \{\lambda\}$.

Claim 2 There exist some $h \leq \lambda \leq m$ and a $\varepsilon_1 \in (0, \varepsilon_0)$ such that

 $f^{n}(B_{\lambda}(x, \varepsilon_{1})) \cap B_{\lambda}(x, \varepsilon_{1}) = \varphi$ for all $n \in N$.

Assume on the contrary that for each $h \leq j \leq m$ and any $\varepsilon \in (0, \varepsilon_0)$,

 $f_{j}^{m_{j}}(B_{j}(x, \varepsilon_{0})) \cap B_{j}(x, \varepsilon_{0}) \neq \varphi$ for some $m_{j} \in N$. Then, by Proposition IV. 6 in Reference [1] and the remark following its proof, for each $h \leq j \leq m$, there exist a point $y_{j} \in T$ and a sequence of integers $m_{k}^{j} \rightarrow \infty$ such that $f_{k+1}^{m_{k+1}^{j}}(y_{j}) \in (x, f_{k}^{m_{k}^{j}}(y_{j}))$ for all $k \in N$ and $f_{k}^{m_{k}^{j}}(y_{j})$ $\rightarrow x$ as $k \rightarrow \infty$. Thus, it follows from Lemma 2 and Lemma 3 that $B(x, \varepsilon_{0}) \cap P(f) \neq \varphi$. This is a contradiction

Take $\delta = \, \varepsilon_1 \, , \,$ by Claim 2, we have that

 $f^n(B_\lambda(x, \delta)) \cap B(x, \delta) = \varphi$ for all $n \in N$.

Proof of Theorem 2 (1) Put $\ddagger (U \cap \omega(x, f)) = k$, then $k \neq \infty$. Otherwise there exists some component of U - B(T) containing infinite points of $\omega(x, f)$, which is impossible. Therefore there exist k pairwise disjoint open connected subsets, denoted by U_1, U_2, \dots, U_k , such that every U_i ($i \in N_k$) is contained in one of the connected components of $U - \{B(T) \bigcup E(T)\}$ and every U_i ($i \in N_k$) contains infinite points of O(x, f). Now we prove (1) of Theorem 2 by induction.

(i) If s = 2, it is clear that $k \leq 1$.

(ii) Assume that (1) of Theorem 2 holds for $2 \le s$ $\le m$, that is to say $k \le s-1$. Now we show that (1) of Theorem 2 holds for s = m + 1.

Let v_1, v_2, \dots, v_s be the end points of U and z_i be the nearest branched point to v_i for each $i \in N_s$.

Claim 3 There must exists a $i \in N_s$ such that $(v_i,$ z_i) $\bigcap (\bigcup_{i=1}^{k} U_i) = \varphi$.

Assume on the contrary that for each $i \in N_s$, we have some $U_i \subset (v_i, z_i)$. For any $f(x), f^{\lambda}(x) \in U_i$ with $l, \lambda \in N$, if $l < \lambda$, then $f(x) \in (f(x), y_i)$. In fact, if $f^{\lambda}(x) \in (f^{\ell}(x), y_{i})$, put $a = f^{\ell}(x)$, then $f^{\lambda}(x) =$ $f^{\lambda-l}(a)$. By Lemma 2, we know that $\bigcup_{i} U_i \cap O(x, f) =$ φ , which is a contradiction.

For each $i \in N_s$, choose $\lambda_i > l_i$ with λ_i , $l_i \in N$ and $f_i^{\lambda}(x), f_i^{l}(x) \in U_i$. Since $f_i^{l}(x) \in (f_i^{\lambda}(x), y_i)$, by Lemma 2, we have

 $[f^{k(\lambda_i-l_i)}_i(f^l_i(x)), f^l_i(x)] \cap [f^l_i(x), f^l_i(x)] \neq \varphi$ for all $k \in N$.

However, it follows from Lemma 3 that $U \cap P(f) \neq \varphi$, which contradicts to $U \cap P(f) = \varphi$.

Without loss of generality, we may assume that (y_1, y_2) z_1) $\cap (\bigcup_{j=1}^{n} U_j) = \varphi, X_1 = (y_1, z_1), X_2, \dots, X_l \text{ are } l \text{ con-}$ nected components of $U - \{z_1\}$ and $k_i = NE(X_i)$ ($i \in$ N_l). Then we have

 $1 + k_2 - 1 + k_3 - 1 + \dots + k_l - 1 = s$

and

 $k_i \leq s - 1, i \in \{2, 3, \dots, l\}$

For each $i \in \{2, 3, \dots, l\}$, let s_i be the number of U_i in X_i . By the inductive hypothesis, we know $s_i \leqslant k_i =$ 1. Therefore

 $k = s_2 + s_3 + \dots + s_l \leq k_2 - 1 + k_3 - 1 + \dots + s_l \leq k_2 - 1 + \dots + s_l = k_2 - 1 + \dots + s_l$ $k_l - 1 = s - 1 = m$.

This completes the proof of (1) of Theorem.

(2) For any $x \in \Omega(f)$, there exist points $x_k \rightarrow x$ and integers $n_k \rightarrow \infty$ such that $f^{n_k}(x_k) = x$. It is clear that for any $i \in N$, we have

 $f^i(x_k) \rightarrow f^i(x)$ and $f^{a_k}(f^i(x_k)) = f^i(x)$.

Put $\#(U \cap O(x, f)) = r$, then $r \neq \infty$. Otherwise there exists some component of U = B(T) containing infinite points of O(x, f), which is impossible. Let $f^{m_1}(x), f^{m_2}(x), \dots, f^{m_r}(x)$ be r points of $U \cap O(x, f)$. Thus there exist r pairwise disjoint open connected subsets, denoted by U_1, U_2, \dots, U_r , such that every U_i whose an end is $f^{m_i}(x)$ $(i \in N_r)$ is contained in one of the connected components of $U = \{ B(T) \mid J \in E(T) \}$ and every U_i $(i \in N_r)$ contains infinite points of $\{f^{m_i}(x_k)\}$. By taking a subsequence, we may assume that for each $i \in N_r$ and each $k \in N$, $f^{m_i}(x_{k+1}) \in (f^{m_i}(x), f^{m_i}(x_k)) \subset U_i$. Now we will prove (2) of Theorem 2 by induction.

(i) If s = 2, it is clear that $r \leq 1$.

(ii) Assume that (2) of Theorem 2 holds for $2 \leq s$ $\leq m$, that is to say $r \leq s - 1$. Now we show that (2) of Theorem holds for s = m + 1.

Let v_1, v_2, \dots, v_s be the end points of U and z_i be the nearest branched point to v_i for each $i \in N_s$.

Claim 4 There must exists a $i \in N_s$ such that $(v_i,$ $z_i) \cap (\bigcup_{i=1}^r U_i) = \varphi_i$

Assume on the contrary that for each $j \in N_s$, we have some $U_i \subset (v_i, z_i)$. By Lemma 3, we have that $f_{j}^{m_{j}}(x_{k}) \in (f_{j}^{m_{j}}(x), y_{j}) \text{ and } (f_{j}^{m_{j}}(x_{k}), f_{j}^{m_{j}}(x)) \cap$ $(f_{i}^{m}(x_{k}), f_{i}^{m}(x_{k})) \neq \varphi$ for each s, $k \in N$ and each $i \in N$ N_s . Thus, it follows from Lemma 3 that $U \bigcap P(f) \neq \varphi$. This is a contradiction.

Without loss of generality, we may assume that $(y_1,$ $z_1 \cap (\bigcup_{i=1}^r U_i) = \varphi, X_1 = (y_1, z_1), X_2, \dots, X_l \text{ are } l \text{ con-}$ nected components of $U - \{z_1\}$ and $k_i = NE(X_i)$ ($i \in$ N_l). Then we have

 $1 + k_2 - 1 + k_3 - 1 + \dots + k_l - 1 = s$

and

 $k_i \leq s - 1, i \in \{2, 3, ..., l\}$

For each $i \in \{2, 3, \dots, l\}$, let s_i be the number of U_i in X_i . By the inductive hypothesis, we know $s_i \leq k_i - 1$. Therefore

 $r = s_2 + s_3 + \dots + s_l \leq k_2 - 1 + k_3 - 1 + \dots + s_l \leq k_2 - 1 + \dots + s_l = k_2 - 1$ $k_l - 1 = s - 1 = m$.

This completes the proof of (2) of Theorem.

References

- 1 Block L, Coppel W A. Dynamics in one-dimension. Lee Notes in Math, Berlin: Springer-Verlag, 1992.
- Blokh A M. Trees with snowflakes and zero entropy maps. 2 Topology, 1994, 33: 379396.
- 3 Huang W, Ye X. Nonwandering points of a tree map under iterations. Scinece in China, 2000, 30: 690698.
- Sun T. Unstable manifolds, non-wandering sets and topological entropy of tree maps. Acta Mathematica Sinica, 2002, 45: 647654 (in Chinese).