广西科学 Guangxi Sciences 2004, 11 (3): 225-229

纳米材料在锂离子电池中的研究进展^{*} Progress of Nano-scale Material in the Research of Lithium-ion Battery

柴小琴 刘长久

Chai Xiaoqin Liu Changjiu

(桂林工学院材料与化学工程系 桂林市建干路 12号 541004)

(Department of Material and Chemistry Engineering, Guilin Institute of Technology,

12 Janganlu, Guilin, Guangxi, 541004, China)

摘要 锂离子电池的核心是选择高能储锂电极材料,纳米材料以其独特的物理化学性能应用作为锂离子电池电 极材料,具有减小极化,增大充放电电流密度,提高放电容量和循环稳定性等优点,有利于高性能。高容量和 高功率电池的发展。纳米电极材料具有非常广阔的应用前景,但目前已有的研究基本处于实验开发阶段,且主 要集中在制备方法上,其微观结构和电化学性能沿需进一步研究探讨。

关键词 锂离子电池 纳米材料 电化学性能

中图法分类号 TM911

Abstract The main task in Lithium-ion battery research is how to find out the material with high storage Lithium. Nano-scale material is used to be the positive electrode of Lithium-ion battery for its special physical and chemical performances. In this paper, the applying actuality of Nano-scale anode and cathode materials of Lithium-ion battery are introduced. The performances and the preparation methods of the materials are also recommended.

Key words Lithium-ion battery, nano-scale material, electrochemistry performance

自从 1991年 Sony 公司推出可充电锂离子电池 以来^[1],由于锂离子电池具有单体电池电压高,能量 密度高,使用安全、可靠等特点,被认为是最具有发 展潜力的电池之一。

锂离子电池的核心是储锂材料,要改善提高锂离 子电池的电化学性能,关键是寻找一种合适的电极材 料,使电池具有足够高的锂嵌容量和很好的锂脱嵌可 逆性,以保证电池的高电压、大容量和长循环寿命的 要求 纳米材料及纳米复合材料具有比表面大,锂离 子嵌入 脱出深度小 行程短的特性,因此,用纳米 材料作为锂离子电池电极的活性物质,能够使电极在 大电流下充放电极化程度小、可逆容量高 循环寿命 长等优点 另外,纳米材料的高空隙率为有机溶剂分 子的迁移提供了自由空间,其有机溶剂具有良好的相 溶性,同时也给锂离子的嵌入 脱出提供了大量的空 间,进一步提高嵌锂容量及能量密度^[2~4]。

十多年来,许多电池工作者都在致力于锂离子电

纳米 CuS和

合起来,纳米材料在锂离子电池中的应用主要是作为 正极和负极的嵌锂活性物质使用,其次,碳纳米管具 有很大的发展潜力。 1 纳米正极材料

池纳米电极材料的研究,并且取得了一定的进展 综

1.1 金属硫化物

大多数金属硫化物相对于金属 Lⁱ /Li的电位在 2V 左右,并具有较高的比容量,另外,将常用的 4V 正极材料如 Li CoO2和 LiMn2O4等和金属硫化物匹 配,其电池的工作电压也在 2V 左右,伴随着半导体 器件工作电压设计减小的趋势,2V 左右的高能电池 成为未来的重要发展方向,所以金属硫化物成为首选 的锂离子电池正极材料 目前,已有文献报道纳米 FeS2和 Cu S以其优良的电化学性能和较为简单的制 备方法而应用于锂离子电池正极材料^[5,6]。

李泓等^[7]采用胶束法制成纳米 CuS粉体 图 1为 纳米 CuS和常规 CuS的 XRD衍射图,纳米 CuS的粒 径约为 7 nm 图 1中出现明显的 CuS衍射峰,纳米 级 CuS与常规 CuS的峰位十分吻合,衍射峰明显变

²⁰⁰³⁻¹¹⁻¹³收稿。

^{*} 广西自然科学基金资助项目 (0342004-2),

宽。图 2显示的是纳米级 CuS的透射电镜扫描照片, 所得超细 CuS粉体主要是由 60nm左右粒子团聚成 粒径约为 500 nm的大颗粒^[8]。

对金属硫化物作为锂离子电池正极材料使用的 研究工作虽然已经取得了一定的成效,但对其作用机 理等问题认识不够深刻,还需进一步的探讨。

图 1 纳米级 CuS (a) 和常规 CuS (b) 的 XRD图

Fig. 1 $\,$ XRD patterns of general CuS (a) and nanoscale CuS (b)

图 2 纳米级 CuS的 TEM 照片 Fig. 2 TEM photograph of nanoscale CuS

1.2 MnO 纳米纤维

固态无机 MnO²用途广泛,具有大量隧道及孔隙 的锰钡矿型 MnO²具有高的能量密度和高的比容量, 并且具有优越的离子 /电子传导率及稳定性和相对高 的电位,成为可充电池领域中最有希望的正极材料候 选物质。

选择一定的 pH值、温度、陈化时间,通过 KM nO4 与 MnSO4在含有硝酸的水溶液中反应获得 的 MnO2纳米纤维具有高度孔隙的纤维结构,纤维之 间交替成雀巢状形貌,每个雀巢大小为 5~ 10 μ m,由 直径从几个纳米到 25 nm 长度从几十纳米到 1 μ m 的纳米纤维组成 锰钡矿型 MnO2纳米纤维属于 A2- x M ns- yO16同构系,由八面体 M nO6在垂直面及边 界连接形成单链或双链,其中 A 为大的阳离子起稳 定结构骨架的作用 锰钡矿型 MnO2纳米纤维为 2% 2隧道结构,横截面为 0.46 nm 0.46 nm,为尖晶石 型隧道的 4倍^[9,10]。锂离子在宽敞的隧道中央快速迁 移,而且该材料易于通过离子交换法进行锂盐化,所 以特别适合作为锂离子电池的正极材料。

从图 3可以看出,电极在 2 8V和 3.8V处有 1 个明显的氧化还原峰,经多次循环后,其峰电位基本 不变,这说明 M nO₂纳米纤维电极具有良好的嵌锂特 性和可逆特性,并且具有较好的循环性能。电极在不 同的电流密度下充放电,对其放电容量的影响不是很 明显。实验表明^[11], M nO₂纳米纤维电极以 0.24m A / cm^2 的电流密度放电,其放电容量可达到 180 m Ah /g 左右,如果以较大的电流密度 0.96 m A / cm^2 放电,其 容量衰减不是很大,仍可达到 150 m Ah /g

图 3 MnO₂纳米纤维电极的循环伏安图 Fig. 3 CV curves of MnO2 nano fiber electrode

1.3 纳米尖晶石型锂锰氧化物

采用溶胶凝胶法在 550° C下煅烧可以得到纳米 尖晶石型锂锰氧化物样品,比表面积为 112.6 m²/g, 其晶粒度是最小的。纳米尖晶石型锂锰氧化物作为锂 离子电池正极材料放电容量 (2.2~ 3.9V, vs Li, 0.1 mA/cm²)可达到 133.8 mAh/g^[11,12]。由于这些纳米 材料具有较高的比表面积,减小了极化程度,而且其 管径和管间隙都是纳米级的,所以使 Li 嵌入深度 小,过程短,从而为 Li 提供了大量的嵌入空间位置, 缩短了锂离子的固相扩散,有利于提高锂离子电池的 充放电密度和放电容量。所以,纳米尖晶石型锂锰氧 化物可以作为锂离子电池的正极活性物质使用。图 4 为纳米尖晶石型锂锰氧化物样品的循环伏安图,样品 在 18.7、36.2、44.0、64.0 处出现明显的 LiMm2O4 衍射峰。

1.4 PPY/V2O 纳米复合材料

由于聚合物 氧化物的交织结构中,导电聚合物 能够提高电子传导率,同时参与电化学氧化还原反 应 导电聚合物通过促进锂离子的扩散动力学过程而 增强锂离子的电化学嵌入 脱出能力,从而能够提高 充放电容量,所以有很多研究工作者对导电聚合物 / 金属氧化物的纳米复合材料进行广泛的研究,其中 PANI/V2 0k PPY /V2 0k 是作为锂离子电池电极活性 物质使用的典型例子,在形成 PPY/V₂O₅纳米复合物 的过程中,发生如下反应: y (pyrrole) + V₂O₅ [poly (pyrrole)], V₂O₅- 2y= [PPY²] y [V₂O₅- 2y]², 形成的 PPY插入在 V₂O₅ 的中间层,在吡咯单体聚合 的同时, V⁵ 还原成 V⁴, V⁴ 中心的形成导致锂离子 容量降低,损失的容量需要通过氧化处理使其恢复。 虽然有容量的损失,但 PPY/N₂O₅纳米复合材料作为 锂离子电池正极材料,在 1.2~ 4.0V (vs. Li)电位区 间放电容量可高达 400 m Ah /g^[9],是很有前途的锂离 子正极材料。

2 纳米负极材料

2.1 碳材料纳米掺杂

碳是锂离子电池的重要的储锂材料,早在 20世 纪 50年代就已经合成了锂的石墨嵌入化合物,但石 墨和锂最多只能形成 LiG,理论容量为 372 mAh/g 为了满足锂离子电池高容量的要求,很多电池研究工 作者将眼光转向碳材料纳米掺杂。碳材料纳米掺杂指 的是在具有不规则结构和单碳层结构的碳材料中掺 杂其它原子,使这些原子在碳结构中呈纳米分散状 态。目前已经有研究的最典型的例子是硅原子在碳材 料中的纳米掺杂

由于硅与碳化学性质相似,所以能很好地与周围的碳原子紧密结合,同时,由于掺杂的硅原子在碳材料中呈纳米分布,使得锂离子不仅可以嵌入碳材料本身所具有的结构中,而且可以嵌入到呈纳米分散的硅原子的空隙中,从理论上每个硅原子可以和4个锂离子结合,因此,在碳材料中纳米掺杂硅原子可以大大增加锂离子的嵌入位置,为锂离子的嵌入 脱出提供大量的纳米通道,因而提高碳材料的嵌锂容量.硅作为锂离子电池的电极材料,在高温下的电化学合金化反应经历了多相变化,形成 Lin2 Sin Lin Sia Lin2 Sia 4个相,因而在充放电曲线上出现4个平台,但

广西科学 2004年 8月 第 11卷第 3期

由于晶体结构的变化与高温反应不同,使得在室温充放电曲线上看不到多个平台。晶体结构变化可能是随着锂离子的不断嵌入,硅的晶体结构从表及里逐渐破坏,形成无定型结构,结晶区域逐渐收缩,在大量锂离子嵌入后,最终全部形成亚稳态的 Li-Si合金 随着锂的脱出,硅的有序结构逐渐得以恢复,结晶区域逐渐扩大。实验表明^[13],纳米掺杂硅后碳材料的容量由未掺杂前的 200 m Ah /g提高到 500 m Ah /g,并且可逆性良好。

除了硅原子外,碳材料还可以掺杂一些如磷、镍 铅等其它原子。有关于碳材料纳米掺杂行为,还需要 更进一步的研究,以获得最高的锂离子嵌入容量。

2.2 纳米氧化锡负极材料

1996年 Fuji公司开始以无定形复合锡基氧化物 (TCO)为锂离子电池的负极材料,使得电池容量比 采用传统碳材料的锂离子电池高 50%。复合锡基氧 化物负极材料的理论体积容量为 3200 m Ah /cm³,是 石墨的 4倍,理论比容量为 837 m Ah /g,是石墨的 2 倍 作为负极材料使用的锡基氧化物包括 Sn SnO SnO₃ Li₂ SnO₃ SnSiO₃等。

黄学杰等^[13]人利用高能球磨方法制备纳米级 SnO,并且采用高分辨透射电镜研究 nano-SnO在放 电后的微观结构,发现嵌锂后的 nano-SnO发生轻微 的团聚。图 5为 nano-SnO的 TEM 照片,从中发现颗 粒为较好的球形,单个颗粒的尺寸为 100 nm,而且在 每一个球形颗粒表面有一个完整的壳层无序结构,这 可能类似于碳负极或金属锂表面形成的钝化膜

图 5 纳米 SnO的 TEM照片 Fig. 5 TEM photograph of nano-SnO

纳米 SnO2 材料是一种无定型的,同时又有金属 元素存在的无机体系,微观结构是由几十到几百纳米 的无定型 SnO2 颗粒组成的新型锂离子负极材料,它 具有独特的嵌锂特性。纳米 SnO2 的嵌锂机理是在纳 米 SnO2 嵌锂过程中,首先是锂离子嵌入 SnO2材料 中,发生还原反应使无定型的纳米 SnO2还原成纳米 金属 Sn颗粒,然后锂离子继续嵌入与金属 Sn形成 合金。由于纳米 SnO2 的颗粒为纳米级,并且颗粒空 隙间也为纳米尺寸,为锂离子的嵌入提供了很好的纳 米嵌锂通道和嵌锂位置,所以纳米 SnO²具有大的嵌 锂容量和良好的嵌锂性能 不同制备方法制备的纳米 SnO²的容量在 500~ 800 m Ah /g,即使在大电流充放 电 的情况下,可逆容量仍然能够达到 200~ 300 m Ah /g

纳米氧化锡负极材料为锂离子电池负极材料开 拓了一个除碳之外的全新体系,并且具有很大的发展 潜力,需要更进一步对其进行研究

2.3 纳米锡锑合金 /HCS复合材料

锡锑合金作为锂离子负极材料具有较高的比容 量,其电化学性能优于单纯的金属锡或锑,因此,已 经引起了广大电池工作者的关注。但是,由于锡锑合 金在充放电过程中体积变化引起的粉化问题而阻碍 了其在负极材料的应用。单纯的纳米金属虽然避免了 粉化缺点,但是容易发生电化学团聚,这也抑制了发 挥纳米材料的优势。将粒径为几个纳米的 Sn团簇分 散在无定形氧化钾网络中的氧化物材料可以克服上 述缺点,但高的首次容量损失同样阻碍了它作为负极 材料的应用。黄学杰等^[13]对此做了大量的研究工作, 他们对锡锑合金和纳米金属材料进行改性,研制出纳 米锡锑合金/HCS复合材料,实验结果表明这种复合 材料是一种很好的锂离子负极材料。

纳米锡锑合金 /HCS复合材料是以球形硬碳材 料为骨架,在碳负极材料的表面钉扎纳米金属或合 金,这不仅发挥了纳米合金储锂的优势,同时解决了 结构稳定性的难题,很好地抑制了合金材料的团聚。 以纳米锡锑合金 /HCS复合材料为负极的锂离子电 池具有良好的嵌锂脱锂能力及良好的循环性能,充放 电比容量达到 500 mAh/g 从图 6和图 7可以看到, 经过充放电以后的纳米锡锑合金颗粒仍钉扎在碳材 料的表面,相互之间很少发生融合团聚,这说明电极 具有良好的循环性能

图 6 HCS/SnSb材料充电后的 SEM 照片 Fig. 6 SEM photograph of the charged compound HCS/ SnSb material

图 7 HCS/SnSb材料放电后的 SEM 照片

Fig. 7 SEM photograph of the discharged compound HCS/SnSb material

3 碳纳米管材料

自 1991年 lijim a首先发现纳米碳管¹¹⁴以来,在 材料学科领域,受到广泛关注 纳米碳管是一种直径 在几纳米或几十纳米,长度为几十纳米到说 1¹⁴m的 中空管,这种管完全由碳原子组成,具有类似于石墨 的层状结构,其层间距为 0.34~ 0.35 nm,略大于石 墨的层间距 0.3358 nm 纳米碳管由于具有特殊的一 维管状分子结构,锂离子不仅可以嵌入中空管内,而 且可以嵌入到层间的缝隙,空穴之中,具有嵌入深度 小 过程短、嵌入位置多等优点,同时纳米碳电极还 具有在大电流下充电的极化程度小、可逆容量高 循 环寿命长等特点,从而有利于提高锂离子电池的充放 电容量,是锂离子电池较理想的电极材料。

目前纳米碳管的制备方法有石墨电弧法、激光蒸 发法、催化裂解法等。对纳米碳管作为锂离子电池的 正极材料和负极材料使用的电化学性能以及其嵌锂 性能已取得了一些研究进展,但还不够完善,需要更 进一步改善提高。 Nalimova等^[15]研究高压下多层碳 纳米管的嵌锂性能,但没有研究其电化学嵌锂性能; Che等^[16]利用循环伏安法发现模板合成的纳米碳管 具有电化学嵌锂行为.但没有进一步研究纳米碳管的 电化学储锂容量和充放电性能: Frackowiak 等^[17]研 究催化热解生长的纳米碳管的电化学储锂性能,并讨 论热处理对纳米碳管的结构和电化学储锂性能的影 响; 陈卫祥等^[4]分别以铁和氧化铁为催化剂, 用催化 热解碳氢化合物气体的方法制备纳米碳管,并详细讨 论不同催化剂对其微观结构、电化学储锂性能以及充 放电循环稳定性的影响,同时还讨论温度和电流密度 对纳米碳管电化学储锂容量的影响:刘春燕等^[18]研 究比较以直流电弧法和催化热解法制得的纳米碳管 的嵌锂性能 充放电性能和循环性能; 王春生等^[19]用 化学气相沉淀法制备的纳米碳管作为锂离子电池的 负极活性物质时,其电池容量超过石墨嵌锂化合物理 论容量 1倍以上,并且发现石墨化程度较低的纳米碳 管,容量可达到 700 m Ah /g,但存在 1V 左右的电位 滞后,而石墨化程度较高的纳米碳管虽容量较低约为 300 m Ah /g,但电位滞后较小且循环稳定性明显得到 改善。

形态 微观结构、石墨化程度、杂质原子和表面 化学组成等都对纳米碳管的嵌锂性能有影响 吴升晖 等^[20]通过改变催化剂生长工艺和制备条件,对纳米 碳管的直径 壁厚等形态参数进行调控,发现长度短、 管壁厚 管腔小且表面不规则的纳米碳管嵌锂容量 高,可逆性也好,在相同的电流密度下,可逆容量为 180~560 mAh/g Lerous等^[21]对纳米碳管进行高温 退火热处理后,发现其 BET表面积及孔体积均随热 处理温度的升高而降低,并且其不可逆容量、可逆容 量也相应有所降低。电位滞后与纳米碳管的微观结构 及表面的含氧基团有关,只有较好的控制纳米碳管的 微观结构,消除间隙碳原子和表面基团的影响,才能 完全消除嵌锂过程中的电位滞后现象,制备出真正实 用的锂离子电池负极材料。

4 结束语

纳米电极材料以其独特的物理化学性能应用于 锂离子电池中,具有减小极化,增大充放电电流密度, 提高放电容量和循环稳定性等优点,有利于高性能、 高容量和高功率电池的发展。纳米电极材料具有非常 广阔的应用前景,但目前的技术不够成熟,已有的研 究也基本处于实验室开发阶段,而且主要集中在制备 方法上,对其微观结构和电化学性能尚需要更进一步 的研究探讨。

参考文献

- Peled E Menachem C, Bar-Tw Detal. Improved graphite anode for lithium batteries. J Electrochem Soc, 1996, 143 L4.
- 2 Liu W, Kowalk, Farrington G C. Electrochemical characteristic of spinel phase LiMm2O4-based chathode materials prepared by the pechiniprocess. J Electrochem Soc, 1996, 143 3590.
- 3 Xiang H Q, Fang S B, Jiang Y Y. Carbonaceous anodes for lithium batteries prepared from pheolic resins with different cross-linking densities. J Electrochem Soc, 1997, 144 L187.
- 4 夏 熙,刘 玲.二氧化锰在锂离子电池中的应用.电源技

术,1997,21(5):190.

- 5 Strauss E, Golodnitsky D, peled E. Cathode modification for improved performance of rechargeable lithium/composite polymer electrolyte-pyrite battery. Electrochemical and Solid-state Lett, 1999, 2 115.
- 6 Eichinger G, Besenhard J O. High energy density lithium cells part II cathodes and complete cells. J Electroananl Chem, 1976, 72 1.
- 7 李 泓,李晶泽,师丽红,等.锂离子电池纳米材料研究.电 化学,2000,6(2):13 ト 144.
- 8 Sugimoto T, Chen S, Muramatsu A. Colloids suifaces A: physicochem. Eng Aspects, 1998, 135 207.
- 9 储 炜,吴 晖,尤金垮.纳米科学技术在化学电源领域的 新近展.电源技术,1998,22(6):256~260.
- 10 Benaissa M, Joseyacaman M, Xiao T D, et al. Microstructural study of hollandite-type MnO₂ nano-fibers. Applied Physics Letters, 1997, 70 2120~ 2122.
- 11 尤金垮,杨 勇,舒 东.锂离子电池纳米电极材料研究.
 电化学,1998,4(1):94~100.
- 12 黄 坤,刘 煦.纳米级电池活性材料的研究进展.电池 工业,2001,6(3):133~136.
- 13 黄学杰,李 泓,王 庆,等.纳米储锂材料和锂离子电
 池.物理,2002,31(7):444~449.
- 14 Iijima, Sumio, et al Single-shell carbon nanotubules of 1nm diameter. Nature, 1993, 363 603~ 605.
- 15 Nalimova, Vera A. High pressure for synthesis and study of superdense alkali metal-carbon compounds. Molecular Crystals and Liquid Crystals Science and Technology, Section A: Molecular Crystals and Liquid, 1998, 3105–17.
- 16 Che G L, et al. Carbon nanotubule membranes for electrochemical energy storage and production. Nature, 1998, 393 346- 348.
- 17 Frackowiak E, et al. Electrochemical storage of lithium multiwalled carbon nanotubes. Carbon, 1999, 37 61- 69.
- 18 刘春燕,唐致远,赵秉英.纳米碳管作为锂离子电池负极
 材料的研究.天津大学学报,2001,34(1):31~34.
- 19 Wu G T, Wang C S, Zhang X B, et al., Structure and lithium insertion properties of carbon nanotubes. J Electrochem Soc, 1999, 146 1696~ 1699.
- 20 吴升晖,尤金跨,杨 勇,等.第十届全国电化学会议论文集.杭州: 1999. H003.
- 21 Lerous F, et al. Electrochemical insertion of lithium in catalytic multi-walled carbon nanotubes. J Power Sources, 1999, 81~ 82 317~ 322

(责任编辑:邓大玉)