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A nonlinear Volterra integrodifferential equation is investigated. The existence and

uniqueness of almost periodic solutions for the equation is obtained.
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1 Introduction

Consider the nonlinear Volterra integrodifferential

equation

x ()= A()x(t)+ J_mcu,s,x(s))dﬁ g(t,
.Xt) (1)
and the perturbed equation

x'(t)y= A(t)x(n)+ t_xC(t,s,x(s))dw g1,

x)+ p(), (2)
where — c© < < £,t€ R,xE R ,x:is defined by the
relation Xr= x (f+ s), -0 <5< L Specially, if C(z,
s.x(s))= C(t.5)x(s), andg(t,x:) = (), Burton'"
and Huangm have imvestigated the existence of
periodic solutions. In this paper, we consider the
existence of almost periodic solutions for equation (1)
under the condition that the solutions of the equation
stable.  The
existence theorem of an almost periodic solution is
obtained.
Definition 1
periodic in ¢ uniformly for (s,x) , if for any X> 0 and

are bounded and eventually totally

C(t,s,x) is said to be almost
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any compact set K inR< R' | there exists aL = L (X
K) > Osuch that any interval of length L contains a
for which

| C(t+ fs,x)- Ct,s,x)<< X (3)
for all#€ R and all (s,x)€ K.

Definition 2 Let / (¢) be a continuous function
defined on R.f (?) is said to be asymptotically almost
periodic if it is a sum of a continuous almost periodic
function p(t) and a continuous functiong(?) defined on
R which tends to zero ast> ©°, that is

f)y= p)+ q1). (4

It is well known that f'(#) is asymptotically almost
periodic if and only if for any sequence { ]5(} such that &

— o ask—> <o, there exists a subsequence { k} for
which £(t+ %) converges uniformly onR.

Let B denote the vector space of bounded
continuous functions mapping (-==°, 0] into R, and
forany h JE B, we set

d(h )= 20 d(h i) /2 (1 dh i),

=
whered (h, J) = _f%u£0| h(s) - J(S)‘ . Clearly, d(h,
hy—> 0asn—> o if and only if b (s)—> h(s) uniformly
on any compact subset of (= ©©, 0] asn—> . We
denote by (B, d) the space of bounded continuous
function B (- 22,0 R with metric d,
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2 Main results

For the equations (1) and (2), we impose the
following assum ptions

(1) A(¢) is a nX n continuous almost periodic
matrix, Ai () (i= 1,2, ,n) represent the eigenvalues
of A(t) N (1)< — a(t) < 0(i= 1,2, ,n) for any <
R.

(1) C(t,s,x) is continuous and almost periodic in
¢ uniformly for (s,x),s< ¢, and (¢,5,x)& RX RX
R'. Moreover, | C(t,s,x) < D(z,s)f(ggp”\x(s)\ ,
where x (s) is continuous on (- ©= ,¢] for any t& R
such that| X(S)‘g ft D(t,s)ds<
b(t). There exists a positive constant k& such that
e (ggptj‘ x ()<< kx (1), andkb(1) < a(t) for any t€
R.

_ on this interval.

(u1) g (¢, h): RX (B, d)9 R' is continuous in?
and D, and for any ¥ > 0 there exists a continuous
function U (¢) such thatU (1)~ Oast> == and| g(1,
h|<< U(r), whenever| his)|<< rforalls€ (-co,
t].

Under the above assumptions (i) ~ (iii), if 0&
R and HE B, there exists a solution of (1) which
passes through (to,H). Moreover, a solutionx () can
be continuable up tof= < if it remains in a com pact
set in K, because x/(t) is bounded as long as x(¢)
remains in a compact set in K.

Let S be a compact set in R, then we have

Definition 3 The bounded solution u(#) of
equation ( 1) is said to be eventually totally (S, d) -
stable, if for any X> 0 there exist I= T(X>= 0andW
= WX > Osuch thatifte= T d(u,,x,) <Wandp(¢)
is any continuous function which satisfies| p (1)l < W
on [t0,°°) ,then d(M,Xt) < XforallZ= to, wherex (t)
is a solution of equation (2) such thatx:, (s)€ S for all
st

Lemma 17

almost

If there exists an asymptotically

periodic  solution for an almost periodic

differential equation, then there exists an almost
periodic solution of the equation.

Therefore, in order to show that there exists an
almost periodic solution of the equation (1), we first
show that there exists an asymptotically almost

periodic solution for this equation.
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Lemma 2  Suppose that the conditions (i) ~
(iii) are satisfied, then there exists a bounded solution
of equation (1).

Proof Letx(¢) be a solution of equation (1),
consider a Liapunov functionV (¢) = _;x2(t) , thenwe

have

Voo (t) = x(¢)[A()x(¢) + Jt_wC(t,s,x(s))d9+

g(t,x) E = a(t)x’ (1)+ kxz(z)J;D(t,s)dH g(t,
x)x ()= = (a(t) = k(1)) x*(t)+ W()x(0). (5)

Since kb(t) < a(t), and U(f)” Oast—> oo,
therefore, if?is sufficiently large, there exist positive
constants ¢ and M such that V(/l) (O - cV(t)+ M,
this means X () is bounded.

Theorem 1 Under the assumptions (i) ~ (iii),
if the bounded solution x (¢) is eventually totally (S,
d)-stable, thenx (¢) is asym ptotically almost periodic.
So there exists an almost periodic solution of equation
(D).

Proof We can write equation ( 1) as

x(t) = AWO)x(t)+ ONC(t,s,x(H s)) ds +
g(t.xi). (6)

Let t be a sequence such thatti> ©° ask> oo . If
we set X' = x(t+ &),k= 1,2, thenxk(t) is a

solution of the following equation
0

X ()= A(t+ t)x()+ | Clt+ #,5.x(t+

s))ds+ g(t+ t,x:). (7
Clearly, Xk(t) remains in S. Since x(f) is

eventually totally (S, &)~ stable, x*(f) is alo
eventually totally (S, d) —stable.

For any givenX> 0, there exists a positive integer
ki = k1(>§ such that 4= Tif k= k. Taking a
subsequence if necessary, we can assume that xk(t)
conv erges uniformly on any compact set in (===, 0]
as k> ©° . Therefore there exists a positive integer k2
= kZ(X) such that if k,m= k2,d(x,5,X'8) <W Clearly
X"(t)= x(t+ ) is a solution of
A(t+ #)x(t)+ Jf C(t+ #,s,x(t+
s))ds+ g(t+ &, x )+ p(t) (8)
andx" ()€ Sforalt€ R, where

p(t)= A(t+ tm)x"(t)+ '

x (1) =

C(t+ o5, X" (t+

s))ds+ g(t+ tn,xt') — A(t+ #)x" (1) —J:C(H
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te,s,x" (t+ s))ds— g(t+ te,xi'). (9)

We shall show that there exists a positive integer
ko= ko(X) such that ifk,m= ko,| p()] <Wlore= 0.
Since x (¢) for any ££ R is bounded, there exists aV>
0 such that | x| << Vforallx€ S. It is clear that
|xk(t)| < Vand | x" (1)l << Viforallt€ R. By
assumption (i), there existsal/= I(V,X¥> Osuch that
for all 1€ R

J:‘V:\C(z‘+ s, x" (14 5))] ds<< lgf (10)

and
—1 W

JJIC(;Jr s, x" (14 5))| ds=<< = (11)

Since A(t) and C(t,s,x) are almost periodic in ¢
and g(z,h)—> 0 ast— oo, for this [ there exists a
positive integer ko = ko (X¥= max(ki,k2) such that if
k,m= ko,

[ C(t+ tw,s,x"(t+ s)) — C(t+ t,s,x"(t+

W
s)) << 5 (- =< 0), (12)
m m W
LA(t+ ta)X" (1) = A(t+ t)x" (1)< =
(13)
and fort= 0,
m m W
lg(t+ onxl') - g(t+ #,x7)|< . (14)
Since we have .
0 0
] C(+ tn,s,x" (1+ s))ds—J C(t+ s,

-1

[ C(t+ tw,s,x"(t+ )| ds+

—co

X" (t+ s))ds|<J

-1 0
J_m|C(t+ t,s,x" (t+ s))l ds+J_l|C(t+ tm,s,x" (t
+ 8)) - C(t+ to,s,x"(t+ s))l ds, (15)
then we obtain‘p(f)‘ <Wiore= 0ifk,m= ko. Since
x"(t) is a solution of (8) which remainsin$ andxk(t)
is eventually totally (S.d) —stable, we have d(x7,x7)
< Xfor all= 0ifk,m= ko. This implies that if k.m
= b,

[ x(t+ &) - x(t+ tn)l<< ﬁ?ypo]lx(m L+ )
- x(t+ W+ 5)l<< &X (16)

1
for all X< 4 and all 2= 0. Thus we see for any

sequence {&} such that ZL'_’ O ask> ©©, there exists
a subsequence {#} of {ﬂc } for which x (t+ #) converges
uniformly on [0,°°) ask> > . This shows thatx ()
is asymptotically almost periodic int. Therefore, there
exists an almost periodic solution of equation ( 1).

In order to consider the uniqueness of almost

periodic solutions of equation ( 1), we replace the
FEAE S 2004F 84 11ES 3

condition (ii) by the following.

(i) C(£,5,x) is continuous and almost periodic
in? uniformly for (s,x),5< ¢, and (¢,5,x)€ RX RX
R'. Moreover, C(2,5,x) satisfied Lipschitz condition,
namely, | C(t,s,x(s)) - C(t.s,y(s))l < D(t.s)
g(s_lip,,]| x(s) - y(s)‘ , where x(s) and y(s) are
continuous on (= ©° ,¢ | for any 1€ Rsuch that! x (s)
~ »(s)/<< _ on this interval iwD(l,s)dgg b(t).
There exists

a positive constant k such that

E(s_lgg(JX(S) ~ v Hx () - (o)l , andkb (1) <
a(t) for any t& R.

Theorem 2 Under the assumptions (i), (ii) /,
and (iii), if the bounded solution x (#) of the equation
(1) is eventually totally (S,d) —stable, then there
exists one and only one almost periodic solution of
equation (1).

Proof From (i)’

(i) is satisfied. Therefore, from Theorem 1, there

one can deduce that condition

exists one asymptotically almost periodic solution of
equation ( 1). So there exists an almost periodic
solution of the equation. Suppose thatx (¢) andy (¢) are
two asymptotically almost periodic solutions of
equation (1), consider function W (¢) = _é [x(¢) -
y(¢) ', then we have

C Wa (= ()= p(0) @) (x (1) - y(0)+

JI_\W(C(LS’X(S)) - Clt.s,p(s)))ds + g(t.x) -

gty 1< = a[x(t) - y(OT + k(x(1) -

y(f)){ t_,,x,D(f,S)ds+ (g(t,xi) = g(t,y)) (x(2) -

y(1) < - (a(t) - k() (x(t) - y(1) +

() (x (1) = y(1)). (17)
Sincekb(t) < a(t) foranyt€ RandU(£)> Oas

{—> ©O

, therefore, we havefligpx([) = y(t). From

references [4], x(¢) and y () are two asymptotically
almost periodic solutions of equation (1), thenx (¢) -

y(t) is still an asym ptotically almost periodic solutions
of equation (1). Now suppose thatx (¢) is a sum of a
continuous almost periodic function p(f) and a
continuous function ¢(?) defined on R which tends to
zero as t—> ©©, and y(¢) is a sum of a continuous
almost periodic function7(¢) and a continuous function
s(t) defined on R which tends to zero as#> ©©, then

(F 4% 194W Continue on page 194)
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we have
[l (x(8) = y(0)) = im[(p()+ q(t)) = (r(2)
+ s(0)) = lLm[p(z) - () I+ lim[q(1) - s(2) |=
Jim[p(6) - r(2) 1. (18)
Sincef]jrglx(l)= y(t), therefore,f]j:{pp(l)= r(t).
The proof is complete.

Example Consider the scalar equation

x ()= - (4 cost— comt)x(t)+ v ... (cost
2
— s X(S) x’eit
t © 19
+ coxt)je " oY L e (19)

wherex:= x(t+ s), — ©© < s< ¢. One can verify
that the conditions of Theorem 2 are satisfied. So there
exists one and only one almost periodic solution of

equation (19).
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