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Abstract

equations is presented- The proposed method always generates descent directions whatever linear

An approximate GaussNewton based BFGS method for solving symmetric nonlinear

search is used- The global and superlinear convergence of the proposed method under suitable

conditions is proved. Numerical results show that the proposed method is successful
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1 Introduction

It s well known that the QuasiNewton methods
play a special rolein solving unconstrained optimization
problems in References [I~ 6]. Some modified BFGS
methods with global and superlinear convergence for
nonconvex minimization problems have been proposed
in References [7~ 11]. We propose an approximate
GaussNewton based BFGS method which can
generate descent directions for the norm function for
solving symmetric nonlinear equations in this paper.

Consider a general QuasiNewton method for
solving the following system of nonlinear equations

F(x)= 0,x& R, (LD
where FE R'—> R is continuously differentiable.
Equation ( 1. 1) can generate a sequence of iterates
{xx},x6 1= Xxk+ dk, where dr is a solution of the

following system of linear equations

Bidi+ F(xx)= 0. (1.2
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If in Equation ( 1. 2), matrix Bk is replaced by the
Jacobian F’ (xt) of the function F at xt, then the
method would be reduced to the wellkknow Newton
method.

F'(xt)di+ F(x)= 0. (1.3)

An interesting feature of Equation ( 1. 3) is its
without

local  superlinear property

com putation of hcobians. To enlarge the convergence

conv ergence

domain of a Quasi-Newton method, line search
technique or trust region strategy can be exploited. In
this paper, we use a backtracking line search technique
to globalize a Quasi-New ton method.

A scalar k= 0 which satisfies the following
equation is a line search step at iteration k of an
iterative method

NF(+ Td) IS IIF (i) Il (1.4
Xk 1= Xk+ kdi is the next iterate. Where & is

called the steplength. We define the norm function as
0(x) = _éHF(x)”zxe R'. So the nonlinear equation
problem (1. 1) is equivalent to the following global
oplimization problem
min0(x),x€ R, (1. 5)
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and Equation ( 1. 4) is equivalent to the following
equation

0(xe+ Tdi)<< 0 (xx). (16

A sequence Xk satisfying Equations( 1. 4) and
(1. 6) are generated by an iterative method that is a
norm descent method. The inequality (1. 6) holds for
all k= Osufficiently small if dk is a descent direction of
0 at xx . Accordingly, the related iterative method is a
norm descent method. In particular, New ton § method
is a norm descent method in the sense that llge 1/
llgill holds on every iterations. However, if the vector
dr is determined from Br, thendr may not be a descent
direction of 0 at Xk even if Br is symmetric and positive
definite. Therefore, in order to globalize a (Quasi—
Newton method, by the means of modifying a Quasi—
Newton direction, li and Fukushima presented an
approximately norm descent line search technique and
established global and superlinear convergence of a
GaussNewton based BFGS method for solving
symmetric nonlinear equations'”!

In this paper, we update Bx by combining a
modified BFGS formula such that Bi 1 inherits positive
definiteness of Br whatever line search is used. We
adjust the steplength and the search direction
simultaneously so that the generated iterate sequence
satisfies Inequality (1. 6). Under suitable conditions,
we establish a global convergence theorem which
shows that there exists an accumulation point that is a
stationary point of Problem (1.5) even if F (x) is
singular everywhere. We also get the superlinear
conv ergence of the modified method.

In the next section, we present a way to generate
an approximately descent Quasi-New ton direction for0
and then propose a new BFGS method for solving
Equation (1. 1), and describe some properties of the
modified method. In section 3, we propose a modified
algorithm. In sections 4 and 5, we establish the global
and superlinear convergence of the modified method
under some reasonable conditions respectively. In

section 6, we report some numerical results.

2 Descent direction by a new Quasi-N ewton
method

First, we give the following Assum ptions.
Assumption 1 ( A) The level set
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K= (x€ RI10(x)< 0(x0))
is bounded.

(B) Fis continuously differentiable on an open
convex setKi containingK | and F' (x) is symmetric for
everyx € K,

(C) The Jaconbian of F bounded, and there exists
a positive constant M1 such that

IF (x) I MV x€ K. (2. 1)

(D) The sequence {x«} is contained in a bounded
set Ki in which F is continuously differentiable, and
there exists a constantm ,M= Osuch that

mlix = yI< IIF(x) = F(y)I< Mllx - yll.

(2.2

According to ( C) and (D) of Assumption 1, for

alx€ Kiandd€ R', we have

mllx — x KK NIF(x)ll= IF(x) - F(x )IK
Mllx - x I, (2.3

mlld < IF (x)dI< Mlldll, (2. 4)

LI IF ()l Ll (2.5)

In particular, for allx € Ki, wehave

mlix - x KK IF(x)ll= lIF(x) - F(x )IK
Mllx = x I, (2.6)

where x stands for the unique solution of FKquation
(L 1) inKi. Then we have
IF(x)I< M,x€ K. (2.7)
Next, we describe a way to generate a descent
Quasi-New ton direction for0 and then propose a new
descent BFGS method for solving Equation( 1. 1).
Recall that

direction is a solution of the Newton Equation (1. 3).

in Newtons methods, the Newton

IfF (x*) is singular, the Equation (1. 3) may have no
solution. To solve Equation( 1. 3), we may need to

solve the least squares problem
min_é||F/(x1f)d+ F(xe)IP,

in order to obtain a direction di, which results in the
so—called Gauss—New ton equation

F (xt)’d+ F'(x¢)F(xt) = 0. (2. 8)

Where, we have used Assumption 1 (A). Tt is
noticed that, if F’ (xx) is nonsingular, Equation (2. 8)
is equivalent to Equation( 1. 3). In Reference [12], a
GaussNewton based method was proposed where the
Quasi—New ton direction is the solution of the following
system of linear equation.

Bidi+ g = O, (2.9)
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where; is an approximation of vector F/(Xk)F(XI«)
and Br is an approximation of matrix F (x0)™
Spedfically, let -1 be the steplength used in the
previous iteration.

Therefore, we can define VGC’[OI‘;

g = (Fu+ T iF(x)) - F(xx)) k1=
F (x¢) F(xt),
and matrix Br is updated by the BFGS formula in

Reference [12}

Bisist B Vk y/fT
T T B
Sk Bl Yk Sk

whereye = F(x+ W) - F(x),%= X& 1 - s and W

Bw 1= B - (2. 10)

= Fu1— Fr. Itis clear that ifllsll is small, then
B 15 = ™ F/(Xk)ZSk.
Now we replace y« byy;;( . In Reference [12]
Flxx + W) — F(x) = F (u)W=

e =
F (x¢) F (xx) st
T
We defineyr = H&—ﬁ’; , whereW = Wi A,
| g (ge 1 — @)l ) .
A= & llsell ,_k 1s a positive constant.
V&l
In the following we will discuss 3 = V”SZW .
We know
T
#* ! 2 W Sk
||y/f - F (.xk+ I)Sk”— || ||Sk||2 -
Foe 1) sl Mlsll+ Ml
! ||\&7||2 !/ 2 "
where M' = Jrp+ IIF (o 1)l and M = 2 M 4|

+ |48, if llsll is sufficiently small, and by using

Assumption 1 (C)and (D), and Formulae (2. 4) and

2
(2.7), we obtain M M= |||E{||||2> mm,| A< kMM,

by using IIF (xe 1)/I<< M. Then, we get Ik -
F (xw 1) sll> 0.

Therefore, we can get

n = F/(xk+ 1)251{, (2. 11)

Replacing y« by);c , we can get the approximate
GuassNew ton—Based BFGS update formula
Busist Bx V’;f' w "

S Bis i s (2.12)

Br 1= Br -

* WTSk
wheresc= xu 1 — s, = WW , whereW = W+

| gl (g1 — gi)l
[lse 1

Acse, A =k

,_k1s a positive
constant.

If Be 1is updated by the formula (2 12),we can
get

A 20045 SA % 11EF 24

T T 2
r vr o Wer W "s)
Sk B 15 = Yk Sk = ||&||2W Sk = ||&{||2 > O,

(2.13)
therefore, Bk 1 is positive symmetric matrix whatever
line search is used. Since the solution dr of Formula
(2 9) may not be a descent direction of0 at Xt when xx
is far away from a solution of Equation (1. 1),it is not
possible to get a steplength k= 0 satisfying Formula
(1. 6). Instead, we use the following line search., the ¥
> Osatisfies the equation.

0 (xk+ L) - 0(x0)<< = &l -
SlLF (xe)llP+ XIF(xx) P, (2. 14)

where & and © are positive constants, and X satisfies

DV X <oo.

k=0

(2. 15)

Because X is small, we can get {xi} is
approximately norm descent. Observe that
. ]T;mo g = F(x0)F(xi)2 g
Accordingly, the solution of Eqaution (2 9) with
& instead of ¢ is dv = - BZIF/(Xk)F(Xk)- Using
Assumption 1 (B), then we can get ¢ is a descent
direction of 0 at xs. This observation prompts us to
regard k-1 as a parameter. When this parameter is
adjusted to be small enough, the solution of Eqaution
(2 9) is a descent direction of 0 at xi. The following
process gives details of its realization . Let
a(M= (Fu+ TF(x)) - Flu)) /T
(2. 16)
Consider the system of linear equation with
palrameterT
Bidi+ g (D= 0 (2. 17)
Let d(T) be the solution of Equation (2. 17). The
following lemma shows that whenT> 0 is sufficiently
small, every solution of Equation(2 17) is a descent
direction of 0 atxx.
Lemma 2.1 Tet § and & be positive constants
and Be be a symmetric and positive definite matrix. If
Xk is not a stationary point of Formula (1. 5), then
there exists a constant 1> O depending onk such that
when 1€ (0,T) | the unique solutiond (1) of Equation
(2 17) satisfies
50(xc)'d(D) < 0.
M oreov er, the inequality
(D) - 0(xe)< - &lTa(HIF -
93

(2. 18)

0 (xe +



SITE (x ) IP
holds for all T> 0 sufficiently small.

Proof According to Equation (2. 16), we have
fima (D= F (x0) F(x).

(2. 19)

Therefore, we obtain from Equation (2 17) that
Jim 5 0(xe) d(T)= - Jim F(xe) F (xi)Bi ' (1) =
— F(xx)"F () Bi "F (xx) F(x).

Since F' (xx) is symmetric and F (x)F(xe)7# 0,
as X+ is not a stationary point of Formula (1.5), the
last equality and positive definiteness of Br imply

Formula (2 18). Inequality (2. 19)has been proved.

Notice that
(O T (D) = 0())
A T -
Jim 50(0e)"d (D) =
- F(x) F (x¢)Bi 'F (x) F(xi) < 0.
Since the right hand side of Inequality (2 19) is
o('l) . Then the Inequality (2. 19) holds for all T> 0

sufficiently small. The proof is complete.

From the above lemma, we can find a descent

quasi-New ton direction by adjusting parameter L

3 The statement of algorithms

In this section, we give an algorithm. Firstly, we
give two procedures

Procedure 1 Let constant € (0,1) be given
Let i be the smallest nonnegative integer such that
Inequality (2. 19) holds with T= d,i= 0,1,. Let
di= d(d)andg= g(d).

Procedure 1 ensures that the value of0 at x«+
didy is less than that of 0 at x¢, though di may not
necessarily be a descent direction of 0 at xx. It is
reasonable to let the scalar & be the steplength.
However, this steplength may be very small if & is
large. To enlarge steplength, we exploit the following
forward procedure.

Let ix and dk be determined by
procedure 1. If ik = 0, let k= 1. Otherwise, let jk be
{0,1,2,:-- &k — 1)

Procedure 2

the largest positive integer j ©

satisfying

O(xk + d/d) = O(u)<< - &lld/all -
Sl Foa)l?, (3.1)
let k= de,

Based on the above process, we propose a norm descent
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GaussNewton based BFGS method as follows.

Algorithm 1

Step 0  Choose an initial symmetric positive
definite matrix BoE R™". letxo€ K. Lethk= 0,

Step 1 Stopifge = 0. Otherwise, determine dk
andA by Procedures 1 and 2 Let the next iterative be
Xk 1= Xk+  Ldk.

Step2 Puts = X1 - xi= kdi, W= F(xu1)

- F(x«), andyy;c = %}%W Update Bx to get Bw 1 by
Formula (2. 12).

Step 3 Letk:= k+ 1.
Now let s see the properties of Algorithm 1.
In Algorithm 1, Ifik= 0, let k= 1.
Otherwise, let jk be the largest positive integerj€ {0,

Go to step 1L
Property

1,2, i- 1} satisfying

O + di/di)) — O(xi)<< - &lld/aullP -
Sl Fxi) 17, (3.2)
where k= d

Note that Formula (3. 2) is satisfied with j= 0
and Br is positive  definite
Therefore, Algorithm 1 is well-defined.

di and & are generated by the algorithm. From

sy mmetric matrix.

the algorithm, it is easy to see that

0+ Tde) — 0(xi)<< - &llkadl® -
SIKF (xx)l1?, (3.3)
which corresponds to Formula (2. 14) with % 0. It is
also easy to see that if %= 1, then Te= T /d satisfies

0 (xi+ kdi) - 0(x) > — aliTall® -
Ol TF (o)l (3. 4)
Notice that the algorithm generates a direction dk
which satisfies

Bidi+ q= 0, (3.5
whereg = q/c(dk). Vector g differs from g (’Il:) if it
0.

4 Global convergence analysis

In this section, we will establish global and
superlinear convergence for Algorithm 1. In a similar
way we can get the global and superlinear convergence
of Algorithm 2 TLet {xt} and {Bx} stand for the
sequences of iterates and matrices generated by
Algorithm 1 respectively. From Algorithm 1, we can
obtain the following lemma straightforw ard.

According to Assumption 1( D), Formulae (2 6)
Guangxi Sciences, Vol. 11 No. 2, May 2004



and (2 7),itis not difficulty to deduce that
W I1*

e I T (M+ eMM)lsll - (41)
and

A MIINF(xi 1) - F(x* Y e MMllxe 1 -
x |, (4.2

if k£ is large enough, we have xiu 1— x , and by

choosing suitable_« , we can get A« 0.

! /
Define G:JOF e+ Tk Fo)dl (43)

Then we have k-1 [F(xk + T-1A) - F ] =
G:Fi.

Hence Formula (2 17) can be rewritten as

Bide+ GF = 0. (4 4

Lemma 4.1 Let Assumption 1 be satisfied. The
sequence {0 (x+)} is strictly decreasing. In addition, the
following statements hold.

(D Ifss> 0, then there are constantsmi > 0 and
M>> Osuch that for allk sufficiently large

MllsllP= y Ts= millsll®.

(2) Suppose that & =

number of k. Then we have

(45)
1 holds only for a finite

; NKEN? < oo (4. 6)
and
D EaIP = D) sl <oo. (4.7)

k=0 k=0
Moreover, Formula (4. 5) holds for all k£
sufficiently large.
Proof

theorem, we have

"1
W s = SkT(Fk+1 - Fo)+ A = 574 0F/(x;c+

(1) By Assumption 1 and the mean—value

fo)dfs+ Ais= &Tﬂ.;Fl(xH foo)d P+ Skﬂ.;F’(x,f
+ WydW - sff;F/(xH ) dfFs+ s ;F/(xk+
fo)d fs - SkTJ:)F/(XJ(+ W) dW+ s = J;F/(Xk+
f0)d fselI” + s[f;F’(xH Wy - Fl(xi+

%k))dff;F’(xH fse)d fs + SkTJ;F,(xk+ fse)se —

Fa+ MW)dl+ As= IR - Ell -
||skT[[0F’(xk+ W) - Fl(xe+ W))df]|||JOF,(xk+

fo)d fell - ”Ska(l)F, (et foe) s - F,(.Xk+ MWHWafll
+ A= mllsll® - IchIIZA/J (I)F,(xk+ Wy - F (xr+

A 20045 SA % 11EF 24

1
fylld - ||y|fo||F/(xk+ fs)s — F'(xe+ BOWIAL
1
+ A = [m - }\JO”F/(XI( + Wy - F/(Xk+

oy lld fllsl” - [[;llF’(xk + fo)s - Flao+

WOWIlaf)llsll+  Arse, (4.8)
where the last inequality follows Formulae (2. 2) and
(2.4). Ifs—> 0, thenW = F. 1 - Fe—> 0. By the
continui ty OfF,(XIc), we haveF,(Xk+ {5 y> F,(Xk),
F’(xk+ W) — F/(xk) and using rAk# 0. So wecan

. / * W S
obtainW "se= m ||Sk||2,yk T = WW "se, therefore,

we get the left hand side of Formula (4. 5). By using
Formulae (2 2) and (4. 1), we have

y el WIS (M+ MM ) s,

Then we get the right hand side of Formula
(4. 5). Therefore, we get Formula (4. 5).

(2) K= 1holds for only finitely many k's, then
Formula (3. 1) is used to determine a steplength T for
all k suffidently large. By Formula (2 14) , we have

SINeEIP+ SllslP<< NEP — 1Fe P+ Xlgell®.

Since {IIFill} is bounded and {X} satisfies Formula
(2.15), we get Formulae (4.6) and (4.7) by
summing these inequalities. In particular, llsll— 0,
which also implies that Formula (4. 5) holds for all k
sufficiently large. The proof is complete

We are going to establish a global convergence
of Algorithm 1 to show that

Assumption 1, there exists an accumlation point of

theorem under
{xx} which is a stationary point of Formula (1.5),
namely,

]igozi,nﬂ|5 0(xe)ll= 0. (4.9

It is obtained from Lemma 4. 1 that if ime~ sup k

7 0, then lime— [[F(xx)Il= 0, hence, Formula (4. 9)

holds So, we need only to show Formula (4. 9) for the
case ]_in']/r’&: 1‘ = O
We do it by assuming

li{r)lgnﬂ|5 0(x)ll> 0 (4. 10)

to deduce a contradiction.

Notice that Formula (4. 10) particularly implies
that thereisa constant Z> Osuch that|F (x:)|= Zfor
all k.

Therefore, from Formulae (4.1), (4 5) and
Theorem 2. 1 in Reference[2] we get the following

lemma
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Lemma 4. 2 If Formula (4. 10) holds, then
there are positive constantsU ,i= 1, 2,3, such that for
any positive integerk inequalities

1BisI<< Ullsll,GllsIP<< sfBis<<
Ullgll?
hold for at least [k /2] many &~ k.
Inequalities (4. 11) and (3. 5) imply that there

(4. 11)

are at least [k /2] many = k satisfying
gl = 1Bl Ullagi Il i IS

G Mlgll. (4. 12)
Next, we prove the global convergence of
Algorithm L
Theorem 4. 1 let Assumption 1 be satisfied,

and Xt be generated by Algorithm 1. Then Formula
(49) holds.

Proof We need only to show Formula (4. 9) for
0. In this case, Inequality (3. 4)
holds for all sufficiently large k. Suppose contrarily

the case lime-— & =

that Formula (4. 9) is not held or equivalent, Form ula
(4. 10) holds. Denote by K the set of indicesi such that
Formula (4 11) holds. Then K is infinite. Since {x«}
C K is bounded. Let Ki C K and subsequences

{xxhek, and {di}ek, converge to x and d ,
respectively. Then we have
Iéi}r(r}qk = 50(x ). (4. 13)

Dividing both sides of Inequality (3. 4) by T and
then taking limits as &> ©° withk€ K1, we get

50(x )'d = o. (4. 14)

On the other hand, taking inner product with dk in
Formula (3. 5), we get

0= diBidi+ gid= UlldllP+ gl di.

Taking limits in both sides ask> <° withk& K.
yields

50x )d < - Ulld IP.

This together with Formula (4. 14) implies d =
0. It then follows Formula ( 4 12) thatlime x g= 0,
w hich (4 13)
contradiction with Formula (4. 10). The contradiction

together with Formula yields a

proves Formula (4. 9).
In the modified BFGS method in this

paper, the iterative matrix Bx is always positive

Remarks

definite, and the similar updating technique is also

adopted as used in Reference [ 11]. Consequently, we

establish Theorem (4. 1) which shows that the
96

iterative sequence has an accumulation point which is a
stationary point of problem min0 (x) = _é ||F(x)||2. It
may not be a solution of the nonlinear equation (1. 1)

if the hcobian is singular at that point. The following
theorem shows a strong convergence property of
Algorithm 1.

Theorem 4.2 Let Assumption 1 hold. Suppose
that the sequence {xr} generated by Algorithm 1 has a
subsequence converging to a stationary x in which
F/(x* ) is nonsingular. Then x is a solition of
Equation (1. 1). Moreover, the whole sequence {x&}
conv erges to Xk .

Proof Sincex satisfies5 e(x* ) =
F(X )F(x ), we have F(xX ) = 0if F(xX ) is
Since {0 (xx)} is convergent,

accumulation point of {xt} is a solution of Equation

nonsingular. every

( 1. 1). By the nonsingularity of F (x ) again, X isan
isolated limit point of {Xx} . From Formulae (4 6) and
(47 ,we havexw 1 — x> 0ask—> oo . Therefore,
the whole sequence {Xt} converges to X . Next. we
give a choice of _# to satisfy Formula (4 2).

Let Yand ms3,ma(ms < ma) be positive constants
andUS [0, 1], we define theC:

Q= {kl m3 WIS Yglg 1(ge 1 — gk)|<
malWIT)

and choose_« as follows
k=

Y, ifke Q.

m3 W ) :
Uns+ (1- Uyma) e - ) AfkE Q.

It is very clear that Formula (4. 2) holds.

In the follow ing we will prove the superlinear

convergence of Algorithm 1.
S Superlinear convergence analysis

To obtain superlinear convergence of Algorithm
1, we need the following Assumption 2.

Assumption 2 F (x) is H o lder continuous at
x ; 1. e, there are positive constants M3 and € such
that for every x in a neighborhood of x

IF (x) - F'(x )I< Mllx = X II'.
The follow ing lemma shows that, like the

(5. 1)

ordinary BFGS method, the Dennis-Mo€ condition in
References [4, 5] ensures superlinear convergence of

Guangxi Sciences, Vol. 11 No. 2, May 2004



Algorithm 1L
approximatel:'z;2 = FFin Algorithm 1

Recall that Br is updated so as to

Lemma 5. 1 Let Assumption 1 hold. If
(B = F' (X' )*)pdll
m
0 e 1]
thend = 1 for allk sufficiently large. Moreover, {x&}

= 0, (5.2

converges supetlinearly.

Proof Omitted. For the proof see Reference
[12][Lemma 3. 5].

This lemma shows that to establish superlinear
comvergence of Algorithm 1, it vernfys that {xt}
satisfies the Dennis-Mo# condition (5. 2).

Lemma 5.2 Let Assumption 1 hold. Then, for
any fixed V> 0, we have

Dl = & IV <oo. (5.3)
=0
Moreover, we have
D0 (V) <oo, (5.4
=0

where ¥(V) = max{llxc - x ||V,||Xk+ - x ||V}.

Proof Omitted. For the proof see Reference[12]
[Lemma 3. 6].

Lemma 5.3 Let Assumptions 1 and 2 hold.
Then, there exist positive constants Ms and m2 such
that for all k sufficiently large

||yi - F /z(x* )sell << Mutllsll and ||yk 1=

mallsill, (55
where & = max{llx — x° ||V,||Xk+ - X ||V}.

Proof Sincexi> x ,Fomula (5. 1) holds for
allk large enough.

WisW = W+ 4s) sW+ dis)= Was+

AkSkT.S%)(W+ Aese) = WsW+ AWas +  Acsi sW+

A 5. (5. 6)
By using Formula (4. 2), we obtain
A Cllxis 1 - x KK Cik. (57

Where C=

By using the mean value theorem we have for allk

_kMM.

sufficiently large
IWsW - s/sF>(x" )sll =

IdF (Y)sF (Y)s - stsF (X )F (X sl
IdF (Y)sF (Y)s - siF (Y)sF (x" )sll+
IdF (Y)sF' (xX s = slsF (x )F (x )sl<
MlsPIF Yy = F'(x ) ll+
WF (X sl FF (Y)s — s F (X ) (s57)  (sd )
F (x sl MMl i+ IF (X )1l

FEHAE 204F 5H F 11EF 2M

lses! ' (Y)se = (sesh ) se (sPse)sTF (x° )sell =
MMllslP i+ 1IF (X ) lllsesd ' (Y ) s —
(sest)” N (shs )t FL(x sl MMs il +
Mlsllls IE (Y = F'(x ) IHs <<
2M M WllsdP . (5.8)
Where YE  (xk, Xk 1). Using Formulae (5. 6),
(5.7) and (5. 8),we can get
I - F'(xX )sll=
HWT&W —&»;[;F/(x* )257(H< W oW — &T&E2&||+

Il 117
AW sesie Il 1 Arsl W 1 AR st sise ||
2 + 2 2 <
[Nse |1 [Nse |1 I1.5ell
MM ullsll+ CM llsll+ CM sl +  C illsdl =
M llse ], (5.9

where Ma= 2MMs+ 2CM+ C . Therefore, the first
inequality of Formula ( 5.5) holds. Moreover, by
Formulae (2 2) and (4. 8) we have
i 1= m W= mmllsdl.
Therefore, the second inequality of Formula
(5.5) holds. The proof is complete.
Remarks Denote P= F (x ) .

matrix 4, define a matrix norm IlA4ll, =

For annX n
[IPAPIF,
where Il lf denotes the Frobenius norm of a matrix.
Here let Hi and He 1 stand for the inverse matrices of
Bi and Be 1, respectively. The following lemma shows
that the BFGS Formula (2 12) exhibits a property
similar to that of the ordinary BFGS formula.

Lemma 5 4 Under Assumption 1 ( A) and
( B) ., there exist positive constants M5, Ms, M7, and k
€ (0,1) such that for allk sufficiently large

1B 1 — F,(x* )<< 1Bk — F/(Jék Vb + Msi,

(5. 10)
lHet = F(X)7 < (1 - Ski +
M)l He = F'(x )72l '+ Mok, (5. 11)
where ¥ (V) = max({llxi - x M e 1+ = X ||V} and
Kk is given by ’
Ke o lp™ " [Hi = F *(x ) ]w | (5. 12)

WH - F~ ' (x )1 Hpye I
In particular, {/IB«!l} and {I| Hill} are bounded.
Proof Omitted. For the proof see Reference[12]

[Lemma3. 8].

The following theorem shows that the new
descent directions of the presented Qusi-Newton
method also have the property of superlinear
conv ergence-
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Theorem 5.1 Let

Assumption 2 hold. Then
I(Be = F'(x )sll

Assumption 1 and

Jm el =0 (5. 13)
Moreover, {xt} generated by Algorithm 1

comverges superlinearly andAx = 1 for all k sufficiently
large.
Proof Formula (5. 11) can be rewrititen as
ggmm_ﬁuwwmgnm_
F'(x ) l-t = WHe 1= F (x ) ’llp- 14 Mol He -
F,(x* ) Mo e+ Mok
We know that {I| Hx — F/(x* )" I} is bounded
it (V) satisfies Formula (5. 4). Therefore,

summing the above inequalities, we obtain

and 1r =

—é@ AH - F(¢ ) ey <oo. (5. 14)
k=0

According to Formula (5. 12), we have
lim 21 H = F (x ) 2l il =
J>oo

1P (H — Fl(x’ )" P
|He — F (x ) 2lle- illPye 1177
Since Il He — F' (x ) *ll7- 1 is bounded, it follow's
NP (H - Fl(x ) )p
Am Py I =0 (1)
According to Formulae (2 5) and (4. 1), we

have

0.

lim
oo |

1Py = 1IF 5 ) ' e i e 2L g
m m ’

By Formula (2 4), we get

WP '(H - F(x ) Hmll= IIF(x )(H -

F' Yy Hu = mll(Ho- F(x ) >l

Therefore, Fonnula (5. 15) implies
I(Hi - F'(x ) ymll

On the other hand, we have
N(H - F'(xX )y ) ll= IH(F & ) -

B)F' (xX ) 'y I= H(F (X ) - Bosll -
WH(F (x ) = B)(s - F(x ) ye)ll=

W He(F (X ) = Bo)sll = | H(F'(xX7)* -
BOF (X )2k = F (X )s)l=
IH(F' (x )* = Bosll - MiwllH(F' (x ) -

B)F' (x ) *llllsll =

o(llslly,

where the last inequality follows from Formula (5. 5).

We know that {{IBll} and {l|Hll} are bounded, and

{ Hi} is uniformly nonsingular. Therefore, there is a

constantms > 0 such that ||1‘1k(F,(X* )2 - Bi)sll=
98

IH(F'(x )} = Bosll -

msll(F'(x ) = Bi)sll for allk. So wehave
W(Hi - F'(xX )y ) = IIF (x ) -
Bi)s |l - o(llsl)
and hence Formula (5. 16) yields Formula (5. 13). In

view of Lemma 5. 1, the proof is complete.
6 Numerical results

In this section, we report results of some
preliminary numerical experiments by the proposed
method. We solve the following problem which is
similar to the problem 1 in various sizes in Reference
[12].

Problem 1

6
value problem[ h

g(x)é Ax +

The discretized two—poit boundary

1 _
(n+ 1)2F(x) = 0,

when 4 is thenX' n tridiagonal matrix given by
8 -1

-1
L -1 8l
and F(x) = (Fi(x),Fa(x),; ,Fi(x))" with F (x)
= cosxi — 1,i= 1,2, ,n In Algorithm 1, we
choose_# as follow $

1, if k€ Q,

k= m3||g1+ 1 — gk” -

— . (
lge 1(ge1 - gl ifke Q

wherems = 10 l3,m4: 105, and

Q= {k‘ m3||gk+ 1= gk|‘< \g;fﬁ 1(ge 1 — gk)‘<
mallge 1 — @ll}.

In the experiments, the parameters of Algorithm
1 wereset tobed= 0.1,T1= 0.001, = L= 107,
and in the nonlinear equation problem the initial
matrix Bo was set to be Bo = A. The iteration stopped
when the condition lF (x)II<< 10 ° was satisfied. The
columns of the tables have the following meanings.

Problem: the name of the test problem in
M ATLAB

Dint the dimension of the problem;

N1 the number of iterations;

NE the number of function

The numerical results indicate that the proposed
method performs well for Problem 1. Moreover, the
initial points have not much influence upon the number
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of iterations. It is observed that the method is useful
when the dimension of the problem becomes larger.

The test results for nonlinear equation problems as
Table 1 Test results for Algorithm 1

follows
(1) Small-scale problems refer to Table I;
(2) Large—scale problems refer to Table 2

x0 (10, , 10) (100, , 100) (1000, , 1000) (- 10, , - 10) (- 100,+ , - 100) (= 1000,---, — 1000)
Dim NI/NF NI/NF NI/NF NI/NF NI/NF NI/NF
n=9 21/137 23 /145 24/147 21/135 23/145 24/147

n= 50 69/579 71 /589 70/583 70/587 71/591 72/593

n= 99 125/1093 126 /1097 128/1109 126/1103 129/1115 127/109

n= 100  126/1109 127 /1117 128/1113 128/1111 127/1105 128/1119

n= 200  215/1943 222 /1997 242/2151 226/2035 222/1999 234/2101
x0  (10.0.10.0.---) (100, 0.100,0.--- ) (1000, 0. 1000,0.-:- ) (= 10. 0.= 10.0.=-) (= 100.0.= 100.0.:=- ) (= 1000.0. = 1000.0.:-- )
Dim NI/NF NI/NF NI/NF NI/NF NI/NF NI/NF
n=9 21/139 21/139 24/153 20/135 23/149 22/143

n= 50 68/577 71 /587 71/587 69/579 69/579 71/587

n= 99 126/1107 125 /1099 127/1101 127/1109 127/1113 128/1121

n= 100  126/1087 127 /1097 125/1095 126/1089 126/1097 128/1101

n= 200  220/1989 224 /2025 233/2095 209/1905 225/2033 237/2121

Table 2 Test results for Algorithm 1
x0 (10, , 10) (100, , 100) (1000, , 1000) (- 10, , - 10) (- 100, , - 100) (- 1000, , — 1000)
Dim NI/NF NI/NF NI/NF NI/NF NI/NF NI/NF

n= 300  220/1995 241 /2191 266/2423 215/1951 246/2245 261/2377

n= 350  234/2127 249 12267 276/2517 240/2185 255/2323 286/2611

n= 400  226/2063 245 /2241 27712527 220/2011 250/2283 280/2561

n= 450  242/2197 274 /2487 304/2761 247/2243 268/2443 309/2807

n= 500  245/2233 269 /2449 297/2717 240/2191 268/2443 293/2681
x0  (10,0,10,0,--) (100,0, 100, 0,--- ) (1000, 0, 1000, 0,-- ) (= 10, 0,= 10,0, ) (= 100, 0, - 100,0,-=- ) (= 1000, 0, - 1000, 0, )
Dim NI/NF NI/NF NI/NF NI/NF NI/NF NI/NF

n= 300  214/1961 243 /2227 274/2505 214/1961 247/2261 273/2501

n= 350  239/2185 264 /2413 289/2643 241/2201 262/2395 289/2643

n= 400  228/2089 255 /2335 289/2645 228/2089 255/2335 290/2651

n= 450  236/2159 269 /2459 305/2783 236/2159 269/2459 297/2709

n= 500  242/2209 268 /2447 290/2647 242/2209 268/2447 304/2775

From the numerical results, we can propose that
Algorithm 11is useful for symmetric nonlinear equation
problems, specially, for the largescale problems. In
summary, the presented numerical results reveal that
the given method has potential advantages when
applying to symmetric nonlinear equations whose
function is not difficult to com pute while the dimension

is large.
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