广西科学 Guangxi Sciences 2002, 9 (3): 181~ 185

新锆合金的相变温度*

Phase Transition Temperature of the New Zircaloy

梁建烈 庄应烘** 赵文金*** 薛淑娟*** 欧晓斌** 周开文** Liang Jianlie Zhuang Yinghong Zhao Wenjin Xue Shujuan Ou Xiaobin Zhou Kaiwen

(广西民族学院物理与电子工程系 南宁市西乡塘 530006)

(Dept of Phys. and Electronics Engin., Guangxi Univ. for Nationalities, Xixiangtang, Nanning, Guangxi, 530006, China)

摘要 采用 DTA及膨胀法测量新锆合金 N18及 N36合金的相变温度。测试结果表明,N18合金的 $\alpha \rightarrow (\alpha + \beta)$ 的 相变温度在 776~ 785[°]C间,其 ($\alpha + \beta$)→ β 的相变温度在 930~ 98[°]C间。在 580[°]C左右,有第二相析出。对 N36合 金,其 $\alpha \rightarrow (\alpha + \beta)$ 相变温度约为 72[°]S[°], ($\alpha + \beta$)→ β 的相变温度约为 91[°]C。 关键词 锆合金 相变 相变温度

中图法分类号 TG113

Abstract Phase transformation of the N 18 alloy and the N 36 alloy were studied by using DT A and dilatometer. For the N 18 alloy, the phase transition temperature of the $\alpha \rightarrow (\alpha + \beta)$ is 776 to 785° , and the one of the $(\alpha + \beta) \rightarrow \beta$ is 930 to 987° , and the secondary phase precipitates at about 580° . For the N 36 alloy, the phase transition temperature of the $\alpha \rightarrow (\alpha + \beta)$ start at about 725° , and the one of the $(\alpha + \beta) \rightarrow \beta$ is about 910° .

Key words zircaloy, phase transformation, phase transition temperature

锆合金因其优良的抗腐蚀性能和机械性能成为 核反应堆的包壳材料。近年来国外相继开发了多种新 型的 Zr合金,其中以 Zr-Sn-Nb系的 Zirlo为代表 我 国也发展了 Zr-Sn-Nb系列的 N18 N36 2种新锆合 金,其成分见表 1 目前,对此 2种新锆合金的相变过 程尚无明确的结论。本研究的目的旨在揭示新锆合金 的相变温度,为制定正确的热处理工艺提供参考依 据。

相变温度的测量方法有:(1)膨胀法;(2)X射线 衍射分析法;(3)金相法;(4)热分析法(DTA DSC); (5)电阻法^[1]。对第一类相变而言,DTA是揭示相转

* 核燃料与材料国家级重点实验室基金项目资助 (编号: 00,585.9.1 & 0101)

* * * 中国核动力研究院核燃料与材料国家级重点实验室,四川成 都, 610041 (National Key Laboratory for Nuclear Fuel and Materials, Nuclear Power Institute of China, Chengdu, Sichuan, 610041, China)

广西科学 2002年 8月 第 9卷第 3期

变温度最有力的手段^[2]。DTA测量相变温度,通常在加热升温的过程中测定。因测量到的相变温度是随升温速率的改变而改变,故常采用将升温速率外推到零度的方法,以求得真实的相变温度。

表 1 新锆合金名义成分

Table 1 The nomal composition of new zircaloy

合金 Alby	Sn Nb (wt%) (wt%)	Fe) (wt%)	Cr (w %)	Zr (wt%)
N18	0.5~1.5 < 1.0	0 < 0.5	≤ 0.5	余量 Remainder
N 36	0.5-1.5 \leqslant 1.5	5 < 0. 5	0	余量 Remainder

Niculina 等^[3]报道 Zr-1Nb-1Sn-0. 4Fe(w ℓh)合 金的 $\alpha \rightarrow \alpha + \beta$ 相变温度大约为 650[°]C。对同一合金, Niculin 等^{[4}指出其 $\alpha + \beta \rightarrow \beta$ 相变温度是 950[°]C。最 近, Canay 等^[5]利用电阻法测试 Zr-1Nb-1Sn-0. 1Fe (w ℓh)和 Zr-1Nb-1Sn-0. 4 Fe(w ℓh)的 2种合金的 相转变温度, 0. 1Fe(w ℓh)锆合金的相变温度分别为 $T^{\alpha \leftrightarrow \alpha + \beta} = 74 \,^{\circ}$ C和 $T_{\alpha + \beta + \beta} = 973[°]$ C;而对含 0. 4Fe (w ℓh)的锆合金,其相变温度分别为 $T_{\alpha \leftrightarrow \alpha + \beta} = 712[°]$ C 和 $T_{\alpha + \beta + \beta} = 961[°]$ C。

由 $Zr \rightarrow 0$ 相图^[6]可知,氧的存在对纯 Zr的 $\alpha \rightarrow \beta$

²⁰⁰²⁻⁰³⁻⁰⁶收稿, 2002-06-03修回。

^{* *} 广西大学材料科学研究所,南宁西乡塘路,530004 (Institute of Materials Science, Guangxi University, Xixiang tanglu, Nanning, Guangxi, 530004, China)

相变温度有很大影响 而 $Zhu^{[7]}$ 也指出,氧会提高锆 合金的相变温度。而 Woo等^[8]的热分析实验结果也 证实,氧的存在提高了 Zr-4合金的 $\alpha \leftrightarrow \alpha + \beta 和 \alpha + \beta$ $\leftrightarrow \beta$ 的相转变温度。因此,在测试 Zr合金的相变温度 过程中,要避免氧对样品的污染。

1 实验方法

对新锆合金相变温度的测试,我们采用 DTA 法、膨胀法 2种实验方法

在测试前,利用镊子把试样浸入 8:46:46的 HF:HNO3:HO溶液 1~2s后,迅速将试样移入 清水中,以洗去试样表面油污。然后把试样放到 580[°]下的高真空中退火 3h,炉冷到室温。

DTA的测试是在 NETSCH STA409PC热分析 仪上进行的,采用 20[°]C /min, 10[°]C /min的升温速率 加热到高温 进行 DTA测试前,预先对试样室抽真 空,然后加入纯氩气吹扫试样室,以排走试样室中的 空气,测试是在纯氩气的保护下完成的。

膨胀测试采用石英顶竿法进行,试样长 30 mm 测试时,预先把试样室抽成 3× 10³ Pa的高真空,然 后再以 2[°]C /min速率把试样升温到 880[°]C。膨胀法试 样由中国核动力院提供。

2 实验结果

2.1 N18合金实验结果

对 N18合金,以 2^{0} C /min 升温速率加热到 1100° ,然后以同样速率降温到室温。图 1和图 2分 别是其升温曲线和降温曲线。升温曲线上,N18合金 有 2个拐点,第一个拐点在 580° 左右,对应第二相 的溶解;第二个拐点在 78° C 左右,对应第二相 的溶解;第二个拐点在 78° C 左右。升温曲线在 79° C 后出现比较大的吸热峰包,这是由于 Zr 合金进入 α + β 相区,升温过程中, α 相不断转化成 β 相,所以出 现连续、平坦的吸热峰包 因第一次偏离基线的点不 明显,故用外推的方法来确定其相变点,这也是目前 文献上通用的确定相变点的方法¹⁹。根据外推的结果,确定其第二相开始溶解温度是 58° C。而升温曲 线中的第二个拐点比较明显,采用其偏离基线的起始 点作为相变开始点。这个点被确定为 78° C。

Kwarciak 等^{[9}指出,对受扩散控制的相变,可以 把吸热峰回到基线所对应的温度视作相变结束温度。 从升温曲线上,可以推断 α+ β→β的相变温度 98℃。

图 2是其降温曲线,从降温曲线上可见到 2个放 热峰 第一个放热峰是在 930~76⁸^C间,第二个放热 峰在 768~68⁰^C间,结果表明,第一个放热峰对应的 是 β → α + β 的相变过程,而第二个放热峰对应的是第 二相的析出。

对 N18合金,还做了 10° /min的升温曲线,其 结果见图 3 从图 3可见到在 833° 有一个明显的相 变峰,其相变开始点为 77 6° 。

同时用膨胀仪测定了 N18合金试样膨胀量与温 度的关系,其结果见表 2 从表 2结果可见到,试样在 升温到 77 6 C以后,试样的膨胀速度发生变化;到 78 5 C后,试样在升温过程中膨胀量下降 我们认为, 这种现象是由于 Zr合金中的 α 相转变成为 β 相所 致 根据膨胀测试的结果,合金 α ↔ α + β 相变温度应 在 77 6 C~ 78 5 C间.

DTA测试结果表明,N18合金 α+ β→β的相变 温度在 77⁶^C~ 78⁷^C;膨胀法的测试表明,该合金的 α+ β→β相变温度在 77⁶^C~ 78⁵^C间。从数据上看, 两者的结果是一致的。

2.2 N36合金实验结果

对 N36合金分别进行升降温速率为 20° /min 升温速度为 10° /min和 5° /min的 DTA测试 测 试结果分别见图 4 图 5 图 6 图 7

图 4是合金以升温速率 2^{oC}/min 加热到 110^{oC}的 DT A曲线 从图 4看,N 36合金于 65^{oC}左 右开始出现吸热峰,吸热峰在 82^{sC}左右又出现另一 拐点,可能是对应于 $\alpha \rightarrow \alpha + \beta$ 的转变开始点 而从图 5 的降温曲线上看,试样从 91^{oC}左右开始出现放热峰 包,此放热峰包面积较大,与试样经过 $\alpha + \beta$ 相区时 β 相不断转变成 α 相,试样不断放出热量有关;试样在 72^{oC}左右完成 $\beta \rightarrow \alpha$ 相的转变 这与 Canay 等^[5]对成 分相近合金 Zr-1Sn-1Nb-0.4Fe(w ℓh)的测试结果 $T_{\alpha \rightarrow \alpha + \beta} = 712^{C}$; $T_{\alpha + \beta \rightarrow \beta} = 961^{C}$ 比较相近

图 6是同一合金以 10° /min升温到 1100° 后 得到的 DTA曲线,图上只见到一个比较微小的相变 峰,对应 $\alpha \rightarrow \alpha + \beta$ 的相变,其相变开始点我们以偏离 基线的方法来确定, $T_{\alpha \rightarrow \alpha + \beta}$ 为 72° 左右。

图 1 N18合金 DTA曲线 (升温速率: 20[°]C /min)

Fig. 1 DTA curve of N18 alloy (heating rate: 20^{°C} /min) 图 7是把合金预先快速加热到 500^{°C},然后再以 5^{°C} /min升温到 1100^{°C}后得到的 DTA曲线,由于升

Guangxi Sciences, Vol. 9 No. 3, August 2002

182

温速度较慢,保护气氛中杂质元素(N₂,O₂)影响加剧,我们没能从上面获得任何有用的信息

Fig. 3 DTA curve of N18 alloy (heating rate: 10° /min)

图 5 N36 合金 DTA曲线 (降温速率: 20[℃] /min) Fig. 5 DTA curve of N36 alloy (cooling rate: 20[℃] /min) 广西科学 2002年 8月 第 9巻第 3期

图 7 N36合金 DTA曲线(升温速率: 5[°]C /min) Fig. 7 DTA curve of N36 alloy (heating rate 5[°]C /min)

3 讨论

Zhu^[7]指出,氧的存在会使相变温度升高在 DTA测试中,为了防止升温过程中出现样品全部氧化的可能,加大了样品的用量。在 20^{°C}/min升降温过程中,样品热效应比较明显。但在 10^{°C}/min的测试过程,由于保护气氛不纯,其相变热效应变小.更低的升降温速率下,其相变的热效应开始不明显

合金的相变的温度与升降温速率有关,而且由于 降温过程的过冷效应,其所对应的相变开始温度应比 真实的相变开始温度低。如欲精确获得相变温度,则 需要在高纯氩气保护下采用较低的升降温速率测试, 才能获得理想的相变峰。然后采用外推法方能就到准 确的相变开始温度。

对于 N36合金,20[°]C /min升降温曲线之间的结 果相互矛盾 对比 Canay等^[5]的测试结果,似乎降温 曲线的形态更能真实地反映相变的过程 而至于为什 么升温曲线不能真实得反映相变过程,需做进一步实 验工作

表 2 N18合金试样膨胀量与温度关系

Table 2 Effect of temperature on the dilatometer of N18 alloy

温度 Temperature (℃)	膨胀量 Dilatometer (^μ m)	温度 Temperature (^C)	膨胀量 Dilatometer (^μ m)	温度 Temperature (^C)	膨胀量 Dilatometer (^μ m)	温度 Temperature (℃)	膨胀量 Dilatometer (μm)
20	0	636	977	725	1 113	790	1 173
55	13	639	982	727	1 115	791	1 172
100	88	642	986	729	1 119	792	1 172
120	122	644	989	733	1 123	793	1 171
140	153	646	991	734	1 126	794	1 171
160	187	648	995	736	1 129	795	1 170
181	224	650	997	738	1 133	796	1 169
200	259	653	1 001	740	1 134	797	1 168
230	306	656	1 004	742	1 137	798	1 167
292	402	659	1 007	745	1 141	799	1 167
350	506	662	1 013	747	1 144	800	1 166
397	584	664	1 0 1 8	749	1 147	801	1 165
450	668	667	1 0 2 3	751	1 152	802	1 164
500	745	669	1 0 2 7	754	1 155	803	1 163
522	778	672	1 0 3 3	756	1 157	804	1 162
550	829	675	1 0 3 7	758	1 159	805	1 161
570	867	677	1 042	761	1 162	806	1 160
580	883	678	1 044	763	1 165	807	1 159
585	892	680	1 047	765	1 166	808	1 158
587	896	682	1 051	766	1 167	809	1 156
590	903	685	1 0 5 5	767	1 168	810	1 155
595	908	688	1 0 5 9	768	1 169	811	1 153
598	913	689	1 061	769	1 170	812	1 151
600	915	691	1 064	771	1 171	813	1 149
603	922	693	1 067	772	1 172	814	1 147
607	925	695	1 070	773	1 173	815	1 145
610	931	698	1 074	775	1 174	816	1 144
614	937	700	1 077	776	1 173	817	1 142
616	941	702	1 0 8 0	777	1 174	818	1 140
618	944	704	1 082	778	1 173	819	1 138
620	948	707	1 0 8 6	779	1 174	820	1 135
623	952	709	1 089	780	1 173	821	1 134
626	956	712	1 093	781	1 174	822	1 132
628	959	714	1 097	782	1 175	823	1 130
629	963	716	1 100	785	1 174	824	1 128
630	966	717	1 101	787	1 174	825	1 126
632	970	719	1 1 0 5	788	1 174	826	1 124
634	973	722	1 1 0 8	789	1 173	827	1 122

绥衣 /	2
------	---

温度	膨胀量	温度	膨胀量	温度	膨胀量	温度	膨胀量
Temperature (°C)	Dilatometer (µm)	Temperature (°C)	Dilatometer (µm)	Temperature (°C)	Dilatometer (µm)	$\operatorname{Temperature}_{(^{\mathbb{C}})}$	Dilatometer (µm)
828	1 120	840	1 096	852	1 066	864	1 035
829	1 118	841	1 094	853	1 063	865	1 032
830	1 116	842	1 092	854	1 061	866	1 030
831	1 114	843	1 090	855	1 058	867	1 028
832	1 112	844	1 088	856	1 056	868	1 025
833	1 110	845	1 084	857	1 053	869	1 023
834	1 108	846	1 082	858	1 051	870	1 021
835	1 106	847	1 079	859	1 048	871	1 018
836	1 104	848	1 076	860	1 046	872	1 015
837	1 102	849	1 074	861	1 044	875	1 009
838	1 100	850	1 072	862	1 041	879	998
839	1 098	851	1 069	863	1 037	881	989

4 结论

综上所述,对于 N18合金,在 580^C,第二相溶 解; 776~ 785^C,α相开始转变成为β相;在 930~ 987^C间,α相转变为β相结束。对于 N36合金,其 α → α+β的相变温度在 725^C左右,α+β→β的相变温度 在 910^C以上

参考文献

1 陆学善.相图与相变.北京:科学出版社, 1990.

- Fipphen J S, Sparks R B. Using differential thermal analysis to determine phase changes temperatures. Met Prog, 1979, (4): 56.
- Nikulina A V, Markelov V A, Peregud M M et al. Irradiation-induced microstructural changes in Zr-1% Nb-1% Sn-0. 4% Fe. J Nucl Mater, 1996, (238): 205.
- 4 Nikulin S A, Shtremel M A, Markelov V A. Influnce of the

secondary phase particles on Zr-alloy plastic flow stability and fracture J Phys IV 6, 1996, (6): 133.

- 5 Canay M, Darón C A, Arias D. Phase transition temperature in the Zr-rich corner of Zr-Nb-Sn-Fe alloys. J Nucl Mater, 2000, (280): 365.
- 6 Abriata J P, Garces J, V ersaci R. The oxygen-zirconium system. Bull Alloy Phase Diagr, 1986, 7(2): 116.
- 7 Zhu Y T, Devletian F H. Precise determination of isomorphous and eutectoid transformation temperatures in binary and ternary Zr alloys. J Mater Sci, 1991, (26): 6218.
- 8 Woo O T, Tangri K. Transformation characteristics of the rapidly heated and quenched zircaloy-4-oxygen alloys. J Nucl Mater, 1979, (79): 82.
- 9 Kwarciak J Morawiec H Some interpretation problems of thermal studies of the reversible martensitic transformation. J Mater Sci, 1988, (23): 551.

(责任编辑:黎贞崇)

三个月解决肺结核

一种快速治疗肺结核的方法马上就能够成为现实。

英国著名科学杂志《新科学家》报道说,现在印度肺结核研究中心的研究者们发现:如果将 DOTS(直接可观察的治疗策略)方案四种药物中的乙胺 醇替换为更强有力的药物 of loxacin,则可以在三 个月内治愈患者。 在 一项针对 416名患者的试验中,9%的病人在 3 个月后体内肺结核病菌被除掉,只有 8%的人在 2年内复发。

广西科学 2002年 8月 第 9卷第 3期