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The estimate order of approximation for the second derivative of Hermite—Fe§ r

interpolation polynomials based on the extended mixed hcobi nodes is given
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Hermite—Fef r

Haverkamp, R.'' and Muneer, Y. E.”! have
investigated the order of convergence for the higher
derivatives of interpolation polynomials with respect to

Chebyshev nodes.

convergence for the second derivative of Hermite-Fef r

Here we discuss the order of

interpolation polynomials with respect to the extended

mixed Jacobi nodes.
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passing direct calculation, we get
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Let f(x) € C[- 1,1]. For these nodes its
Hermite—Fef r interpolation polynomials Ha 1(f;x)
which satisfy /

Hou ((fsxe)= f(x), Hoa 1 (f3x6)= 0,

k= 0,1, ,n

How (f5%) = 22 f () Vi) ), (6)
w here

Vi(x)= 1- k (x

K (xi)
1+ %n(n+ )(1- x).k= 0,

- X - xi 7
b k= L2,
sin Vi

(x = xx)

|| ° ||

write

denotes the supremum norm on [- 1, 1] and
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k= 0,1, ,n ()
Lemma 1 [ff(x)€ Cl- 1,11, then forx€
(_ 17 1)7
2
He 1 (f3 %) = IQ_(”—lxzn £,

hereafter the bounds of the terms “ O” are absolute

constants.
Proof We may suppose without loss of
generality thatfl(— = 0. (9)
From a known propertyBE Ve(x)E(x)= lwe
& 0
cel 20 Vi(x)E(x)" = 0,i= 1,2, so by (6),
=0
H' 1 (fix) = 2 (f () = f(x))"
) = D @ k). (10
= 0
Noticing that
(e = x)be. (x)— k(x) - akk(x)
(e = x)k"(x)= 2% (x) - ak'(x), (11)

and using the notations in (8), the above equality
(10) can be written in the form as follows

H'm 1 (f: %) = E fro (o) Ve ()l (x) (I (x)
- ak(x))+ @Om(ka(xw(x)(lk(x) -
alk(x)) - %?Ofx,ow)m(x)h’(x)cnfk’(x) -
gofx,om)m(x)l«(x)akk”u) -

D 7 (k) =2 I (1)

First estimate /1.

From (3) ~ (5), it follows that
Kr)= —2Z 4o 0(1).k(x)= O(1).
I+ x n
x€ (- 1L,1),k= 0,1, ,n, (13)
S0
k(x) - ak (x)= 24 ce (- 1.
I+ x
(14)
By (8) using ]_agrange mean theorem we have
| feoGe) << 111 fea(ael < 11 £
(15)
Combining (13) ~ (15), it follows that
25 feolx) T (o) (x) (k(x) = @K (x))
=1
= Oy Y ()
1+ x k=1
% €
but by (7) and0x = o+ 1,k: 1,2,- ,nm,
2 v () = Z] .= 00n), (16)

and we also have
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S Vo' (x)lo(x) (b (x) = aok'(x))
_ ﬂl”—)—zn 7
- X

thus we obtain the estimate Ii =
x€ (- L1).

Similarly, we have > =
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- X S
- X

2
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1- x
x€ (- L.

Next we estimate/s.

From (7) and (11), we get
Z o) Vi)l (v) ik (x)

B glf"’“(x’f)lk/(x)mk/(x) +

Zkz)lfm(xk)ﬂﬂﬁ(—)fx- ak (x).

According to Markov s inequality and (13),
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M oreov er,
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(16) , we can conclude that

() (x)ark (x)
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1- x
0(n*)
(1I+ x) 1-x
Finally, we estimate /4 and 5.

With help of the formula (3) we can conclude

that )
K'(x) = %”—x%,xe (- 1,1).
Again by (7) and(13), (15), (16),

E () Vi (el (x)ak (x) =
Z el ¥

but by (5) weknow that (x — xx)k(x) = 0(;1
>
L= %”—xlzlv’ll,xe (- 1,1).

Il xe (- 1,1).

I =

it follow s that

2
Ol

zk(x) ak'(x).
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For Is, we have Is = — E f,(x)Vk,(x)lAz(x) =
k=0

o) IIf'Il.
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Due to“ 020° =~ “ 200°, and the others are not
homeomorphic with each other, the proposition has

been proved.
Proposition The homeomorphism class of
AN

G. M- are six as follows

ORESRORERDRE

/
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Proof

class is equal to homeomorphism class which has three

By theorem, finding homeomorphism
negative edges. Let negative edge be outer, radiative
and inner, and their numbers are respectivelya,b and
¢, anda,b,cc {0,1,2,3),a+ b+ c= 3. Showed in
Table 2

Through twisting, it can be easy to see that
(6) =~ (D, (7=~ (D, (8= (), (99~
(2, (1) = (10), (12) = (1), (13) =~ (1),
(16)= (14), (18) == (14), (19) = (15), and due
to symmetry, (10) = (2), (15 = (4), (14~
(1). So ther homeomorphism classes are exactly six:

(1, (2), (3), (4, (5) and (17).

The proposition has been prov ed.

Table 2
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From (9), wehavel f (x)| = \ff”(t)dt|< 217",
x€ (- 1,1).

To sum up we get from (13) the conclusion of
Lemma 1.

Letf(x) € C[- L,1]and P(x) isa polynomial
such thatP (x) is the best appmmmatlon polynomlal
of degreen off (X) From H2w 1(Pyx)= P (x)",
we have
H'om 1(fsx) -

A

further applying Lemma 1 we immediately obtain the

F(x)= Hu i (f- Pix)+ P'(x)

following Theorem 1.
Theorem 1 If/(x)€ C' [~ 1, 1], then forx€
(= 1, 1) we have

Hz:»l(f x) - f(x)= Qn—)'2E”(f)

where En(f) is the best approximation of f’/ by
poly nomials of degreen.

Theorem 2 Iff (x)€ C [~ 1, 1]andk(f” ;W
is the modulus of continuity off(p) , then forx& (- 1,

1), wehave
Hom 1(f;x) - f”(x)= {np_q 1o _lxzt{f(p);zl] ,

p= 4.
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Proof  Using Theorem | and the Jackson
theorem:

w e obtain imm edlately the conclusmn of Theorem 2
Similarly, by Ho 1(f5x) denote Hermite—Fef r

interpolation poly nomials based on the zeros of K(x)=
2n+ 16
cos

2
( 1+ x) 0

CoSs 5

2
Jacobi nodes) we also can conclude the following

,x = cos 0 (the other mixed

theorem.
Iff(x)c C[- 1,1], then forx€ (- 1, 1) we
have
How (f35) - f'(x) = Q_”—%En ("
1 »
Ty
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