广西科学 Guangxi Sciences 1999, 6 (4): 284~ 286

Mo(VI)与糠醛缩二胺类双希夫碱配合物的合成和表征 Synthesis and Characterization of Molybdenum(VI) Complexes of Bis-Schiff Bases from Furfural O-Diamines

闭献树 毕小平* 曾建强
Bi Xianshu Bi Xiaoping Zeng Janqiang
(广西师范大学化学化工系 桂林市育才路 3号 541004)
(Dept. of Chem. and Chemical Eng., Guangxi Normal Univ., 3 Yucailu, Guilin, Guangxi, 541004, China)

摘要 合成了 M_0 (VI)与糠醛二胺类双希夫碱的 2种新配合物,通过元素分析、红外、紫外、热重-差热分析、 摩尔电导及 X射线衍射分析的表征,确定了它们的组成和可能的结构。 关键词 糠醛缩二胺 双希夫碱 M_0 (VI) 双核配合物 中图法分类号 0 614.612

Abstract Two new solid coordination compounds of molybdenum (VI) with bis-schiff bases from furfural o-diamine were synthesized and characterized by elemetal analysis, IR, UV, DTA-TG, molar conductance and X-ray diffraction analysis. The composition of the coordination compounds Mo_2O_6 (L₂)₂ and Mo_2O_6 (L₂)₂ were confirmed and their possible structures were discussed.

Key words furfural o-diamine, bis-schiff bases, molybdenum (VI), binuclear complexes

80年代以来,人们发现芳环或杂环的希夫碱配 合物具有很高的植物生长激素活性,同时,国内外有 关过渡元素及稀土金属离子与各类希夫碱形成的配 合物结构及其活性的研究报道不少^[1~3]。但关于 Mo (VI)与希夫碱形成的配合物的报道不多,为探索 Mo (VI)与杂环希夫碱配合物的结构特点,我们合成了 糠醛缩二胺类双希夫碱化合物,及其与 Mo (VI)形 成的双核配合物 并通过元素分析、红外光谱、紫外 光谱、摩尔电导和热重 差热 X射线衍射分析对配合 物进行了表征,初步确定了其组成及 Mo (VI)的配 位环境。

1 实验部分

1.1 仪器和试剂

PE-240元素分析仪,N-5DX型红外光谱仪(KBr 压片),LCT-1型微量差热天平,DDS-11A型电导率 仪,UV-330型紫外可见分光光度计,X4型熔点仪, D/max 子 A型 X射线衍射仪。

所用试剂均为分析纯

1.2 配体的合成

糠醛用减压蒸馏方法提纯

MoO₂ (acac)₂按文献 [4 方法合成

配体 L_i= N, N['] - 二糠醛缩邻苯二胺的合成:将邻苯二胺和糠醛按物质的量比 1:2的比例在无水乙醇 中缩合得黄色固体,收率 92%。

配体 L₂= N, N[']-二糠醛缩乙二胺用类似方法合成。得红色固体,收率 85%。

1.3 配合物的合成

将 0.625 g (2 m mol) MoO2 (acac)2 溶于 10 m L 95% 乙醇中,然后将其滴加到有 0.432 g (2 m mol)配 体 L 的无水乙醇溶液中,搅拌回流 1 h,产生紫色沉 淀,趁热过滤,用丙酮洗涤,真空干燥,得紫色固体, 收率 65%。

M₀₂O₆(L₂)₂以类似方法合成,得橙红色固体 收 率 70%。

- 2 结果与讨论
- 2.1 配合物的组成

配合物中 Mo的量用重量法测定,元素分析 C H N的数据见表 1,实验值与计算值 (括号内) 接 近,配合物组成为 Mo²O⁶ (L¹)²和 Mo²O⁶ (L²)² 2.2 红外光谱分析

配合物的红外光谱与相应的配体不同,表明形成 新的配合物,它们的主要红外光谱数据列于表 2 从 表 2数据可知,在 923 cm⁻¹~ 940 cm⁻¹与 640 cm⁻¹

¹⁹⁹⁹⁻⁰⁶⁻²³收稿, 1999-08-01修回。

^{*} 山西医科大学药学系,太原,030001(Dept. Pharmaceutical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China)

表 1 配体及配合物的元素分析结果

Table 1 Analytical and other data of ligands and complexes

化合物	颜色 Color	熔点 Malting point	产率 Yield (%)	 实验值 Found [®] (%)			
Compound		$(mp / ^{\circ C})$		С	Н	Ν	Мо
$\mathbf{L}_{\mathbf{i}}$	黄色 Yellow	180~ 181	92	72. 80 (72. 73)	4.51 (4.55)	10 58 (10 61)	
L_2	红色 Red	162~ 163	85	66.50 (66.67)	5.68 (5.56)	12 98 (12 96)	
M 02O6 (L1) 2	紫色 Purple	235~ 236	65	47. 16 (47. 06)	2. 90 (2. 94)	6.88 (6.86)	23. 50 (23. 52)
M 02O6 (L2) 2	橙红色 Orange-red	192~ 193	70	40. 20 (40. 01)	3. 23 (3. 33)	7.95 (7.78)	26. 67 (26. 65)

* 括号内数据为计算值 Values in brackets are calculations.

表 2 配体和配合物的主要红外光谱数据

Table 2Main IR data of ligands and complexes (cm^{-1})

化合物 Compound	$\gamma_{\text{G=N}}$	$\gamma_{M\text{o-Ot}}$	$\gamma_{Mo-~Ob}$	$\gamma_{Mo-~N}$
L_1	1 650			
L_2	1 630			
$M_{02}O_6(L_1)_2$	1 635	923	640	498
$Mo_2O_6(L_2)_2$	1 620	940	615	485

~ 615 cm^{-1} 均出现强吸收峰,可分别归属为 γ_{Mo-0} 和 γ_{Mo-0} 的吸收峰 ^[5,6] 配体在 1.650 cm^{-1} 、 1.630 cm^{-1} 各有一强吸收峰为 $\gamma_{C=N}$ 在两配合物中吸收峰均比 配体中的 $\gamma_{C=N}$ 向低波数移动,说明希夫碱通过亚氨 基上的氮原子与 Mo配位,且配合物在波数 485 cm^{-1} ~ 498 cm^{-1} 处有吸收峰,对应于配位 Mo-N的吸 收,这进一步证明了配体中氮原子与 Mo配位。

2.3 配合物的紫外光谱及摩尔电导

两种配合物的紫外光谱和摩尔电导都是在 DMF 中测定,数据列于表 3

表 3 配体和配合物的 UV数据及摩尔电导

 Table 3
 UV spectral and molar comductance for ligand and complexes

化合物 Compound	γ_{max} (nm)	Molar counductance(S° cm ² ° mol ⁻¹)
L_1	310	
L_2	320	
$Mo_2O_6(L_1)_2$	336	19. 5
$Mo_2O_6(L_2)_2$	340	15. 1

各配合物和配体在紫外光区均出现一个吸收峰, 可归属为 C= N键的 π→π^{*} 跃迁,配合与配体的紫外 光谱相比,峰位置发生位移。配体在 310 nm 320 nm 处的吸收峰在加入金属离子后红移至 336 nm和 340 nm 处,说明希夫碱与金属离子之间有配位键生成¹⁷。 吸收峰红移是由于配体中的 N原子与金属离子配位 后,使电子离域程度增大,导致配合物中 π 电子活动 范围更大,实现 $\pi \rightarrow \pi^*$ 跃迁所需的能量降低。从摩尔 电导 Λ_m 值在 15 S° cm²° mol⁻¹~ 20 S° cm²° mol⁻¹ 之间,属非电解质范围^[8]。

2.4 配合物的热分析

在升温速度 1° C /min, 量程 50^{μ} V 下用差热天 平测得配合物差热、热重分析数据列于表 4 从表 4 数据可以看出,在 33° C ~ 49° C 出现 2个放热峰,伴 有失重,为配合物的分步氧化分解所致^[9]。在 59° C 后出现一个平台,此时为稳存的 M $_{\circ}O_{3}^{(10)}$,总失重率 与计算值基本一致 在 760° C 以后氧化物开始挥发, 900° 基本挥发完全。配体及配合物熔点用 X4型熔点 仪测定,数据列于表 1 表 4 配合物的热分析数据

Table 4 DTA-TG data of complexes

配合物 Complex	放热峰温度 Temperature of the exothermal step (℃)		总失重率* Total loss of weight(%)	最终产物 Remain
$M o_2 O_6 \ (\ L_1)_2$	339	470	82. 45 (82. 36)	M oO ₃
$Mo_2O_6~(L_2)_2$	355	495	80. 23 (80. 01)	$M \ o O_3$

* 括号内数据为计算值 Values in brackets are calculations.

2.5 X射线衍射分析

配体及配合物固体用 D /max-Y ▲型 X射线衍射 仪测定,数据列于表 5

各配体和配合物在 5.00° < 29 < 40.00°范围内 均出现衍射峰,说明它们均为晶体物质。配合物与相 应配体衍射峰的 29.d值及相对衍射强度 I/I 相差 较大,说明形成了新化合物。

根据 G H N及 Mo (VI)分析值和 IR UV 热谱 Λ_m 及 X射线衍射分析结果,我们认为化合物 为双核配合物,其组成为 Mo²O⁶ (L)²和 Mo²O⁶ (L²)²,推测配合物的配位形式为:配体中亚氨基上的 N与 Mo (VI)配位,同时存在 Mo (VI) – O桥键和 Mo (VI) – O端键, Mo (VI)的配位数为 6,不含 配位水 它们的可能结构如图 1

complexes			
化合物	29 (°)	<i>d</i> (nm)	$I / I_0 (\%)$
Compound	2()	u (IIII)	1 /10 (/0)
配体 L ₁	6.56	1. 08	15. 2
Ligand Li	8.91	0. 927	23. 6
	13.50	0. 721	40. 3
	18.19	0. 531	100
	20.60	0. 409	66.5
	23.14	0.326	51. 2
	29.05	0. 301	39. 6
	32.82	0. 297	48. 7
	37.54	0. 281	36. 9
$M o_2 O_6 (L_1)_2$	8.42	0. 951	65.5
	10.75	0. 823	78.1
	15.12	0. 687	83
	19.01	0. 502	68. 7
	22.83	0. 465	100
	26.35	0.420	70.1
	30.48	0. 389	58. 3
	32.19	0. 351	49.4
	35.07	0. 302	52. 1
配体 L ₂	5.92	1. 13	11. 0
Ligand L ₂	7.81	1. 01	16. 2
	10.62	0.851	25.6
	14.37	0. 765	39. 3
	16. 20	0. 627	45.1
	20.09	0.544	100
	25.11	0. 501	62. 3
	28.34	0. 453	38. 4
	33. 50	0. 411	45. 7
$M_{02}O_6 (L_2)_2$	9.33	0. 851	88. 0
	12.15	0. 715	75. 9
	15.42	0 543	80. 4
	18.35	0. 507	65. 1
	23.16	0 455	100
	28.01	0.400	78. 7
	30.47	0. 382	59.4
	33.16	0.357	62. 3
	25 40	0 222	40 1

Table 5 X-ray diffraction analytical data of ligands and

a. Mo₂O₆ (L₁)₂

b. $Mo_2O_6 (L_2)_2$

图 1 配合物的可能结构

Fig. 1 Possible structure of the complexes

参考文献

- 1 Mala Nath, Sharma Neelam, Sharma C L Triphenyltin (IV) complexes of semi- and thiosemicarbazones. Synth Rect Inorg Met-Org Chem, 1990, 20 (5): 623-643.
- 2 Ernest H. GB2078212, 06 Jan, 1982.
- 3 汪焱钢, 叶文法. 具有激素活性的 Schiff碱化合物的研究 (I) 苯乙氧酸类 Schiff碱的合成及其生物活性. 高等学 校化学学报, 1996, 17 (1): 91~ 93.
- 4 Chem J J. Newton W E. Synthesis of Mo (IV) and Mo (V) complexes using oxo abstraction by phosphines Mochanistic Implications. Inorg Chem, 1976, (15): 2612 ~ 2615.
- 5 Carolyn Kobler. Molybdenum (VI) Complexes from diols and sminoalcohols the occurrence of Mo2O3 and Mo2O5 Core structures- J Chem Soc Daton, 1980 (2): 248~ 252.
- 6 Lozano R J, Roman F, Jesus De et al. . Study of dimeric molybdenum (V) complexes of piperidine carbamate. Synth Rect Inorg Met-Org Chem, 1990, 20(2): 179~ 188.
- 7 Mala Nath, Sharma N. Studies on some organotin (IV) complexes of semicarbazones and thiosemicarbazones. Synth Rect Inorg Met-Org Chem, 1989, 19 (4): 339~ 356.
- 8 毕思玮,刘树祥.氨基酸水杨醛席夫碱与铜 (II)配合物 的合成及其抗菌活性和稳定性、结构间的关系...无机化学 学报, 1996, 12 (4): 423~ 425.
- 9 范玉华,毕彩丰.铀酰的双席夫碱类配合物的合成与表征. 应用化学, 1996, 13 (2): 10ト 103.
- 10 Dask K C et al. Mono- and binuclear dioxomolybdenum (VI) complexes with polydentate Schiff base ligand. J Indian Chem Soc, 1992, 69 501~ 504.

(责任编辑: 蒋汉明 邓大玉)