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Almost Periodic Solution of Schoner Models with Diffusion

Schoner
Su Fanglin Luo Guilie Liu Shengdiang
VNV P =l X B 5%

( Guangxi Normal University, 3 Yucailu, Guilin, Guangxi, 541004, China)

(

Abstract

3 541004)

The almost periodic solution of non-autonomous diffusion Schoner models is discussed

through Liapunov function and differential inequalities. It is found that a unique almost periodic so—

lution existsin that model and remains stable under disturbances from the hull
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Recently more and more people have been dedi-—
cated to the studies of ecosystems for a patch—environ—
ment. Schoner(1974) had studied the two species com—
petition system as follow s

X = rix( L _ rmx — roey-— c),
X+ e

. I

y= rzy(y+ oy T TuX = rmy - o),

whereri, Ii,a,ri(i,j = 1,2) are positive constants. In
reference [1] a non-autonomous competition Schoner
system with diffusion was studied.: Whereas in many
circumstances, a few things are truly periodic. So we
extend the system in reference [1] to the system with
all coefficents which are continuous almost periodic

function in this paper. We consider the following sys—

tem
Xi= xl[xliJﬁ)(—t) - ru(t)x1— ra(t)y
—a(t) ]+ Di(t)(x2—- x1)& fi(t,x1,x2,y),
X2= xz[m_z%i&(%) — ra(t)x2- at)]
+ De(t)(xr - x2) L f2(t,x1,x2,)),
)}: y[ﬁ%}(—t) - rmi(t)x1— r(t)y

- ())& g(t,x,x2,y),
(1)
wherexi(i= 1, 2) is the density of speciesx in patch i;
¥ is the density of spedesy in patch I Di(?) (i= 1,2)
is the diffusion coeffident between patches i and j for

species X;zi(t),a(t),a(t),ri(t) ,Di(t) (i,j= 1,2,3)
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diffusion, Schoner model, almost periodic solution, stability under disturbances from

SC}IOH er

are continuous and strictly positive almost periodic
!
Now we let f* =

[o,SHP)f(l‘) o=

[Oi}l&i’)f(t), for a continuous and bounded function

functions.

S (1) . Thefollowing arguements are based on the hy-
pothesis that

min{zi ,d,d, D) > 0,28 = dé'> 0.
1 The Existence and Uniqueness of Almost Periodic
Solution

Two lemmas are made before giving main result.

Lemma 1  Suppose system (1) satisfies ( H ),
then every solution {x1(¢),x2(¢),y(¢)} of (1) with
positive intial conditions is ultimately bounded in S'=
{(x1,x2, ) S x1,x0,9< LY, namely S is an invari—
ant set of (1), wherehi= min{m,y },L = max{M,

—#

y. m,M,)_/l,y are the same as in reference [1].

Whete

! u ou u I 1 u Iy
z3 — 46 Zi = Ge zh - e
> max{T T I T},
73163 rie e
! uou u [ 1 ( Hl)
2L — dédi Z3— e
u_u [y .
rizel 7333
Proof  According to Theorem 3.1 in reference

[1] and (Hi), itis easy to learn that the conclusion is
correct.

Lemma 2 Suppose system (1) satisfies ( Hr) -
( H), then (1) has a unique solution which is globally

attractiv e.

Where

111 -4 = 3
ri > (ell)2+ h+ 3,
r122> Luz+ Qul

IN\2

h o

(elu) (1)
) Z3 u
r33z> 1.2+ ris.

(e3)
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Proof

ilar to the proof of Theorem 4. 2 in reference [1], we

( Fe) implies (4. 1) in reference [1], sim—

can com plete our proof easily.

Theorem 1. 1 Suppose system (1) satisfies ( Hi)
— (H). then (1) hasa unique almost periodic solution
{un (£) ,u2(2),v(¢) } which is globally attractive and
range f{ui(z),u2(t),v(¢)} & S, mod{u (2),u2(t),
v(H)}E mod{f1,f2,g), fort€ R,(xi1,x2,y)C S.

Proof By the almost periodicity of zi (?) e (1),
a(t),ri(t),Di(t), there exists a sequence of {k}, &
—>+ © (k>+ ), such that

zi(t+ ky> zi(t), e(t+ k)~ a(1),

a(t+ k)~ a(t), (t+ k)= m(),

Di(t+ )~ Di(t),i,j= 1,2, 3forall € R.

(2

We may suppose {%) is an increase (if necessary.
choose subsequence) . Hence for any given real number
Uthere exists K = K(U) , such that whenk= K , we
have i+ U= 0, thust+ = Oforki= K,i= U,

Since S is an invariant set of system (1), for any solu-
tion {x1(¢),x2(¢),y(¢)} of (1), we have
{(x1(0),x2(0),y(0)}€ S,z Uk= K= {xi(¢
+ xe@+r b ,ye+ f))E S
We shall show the function sequence {x1(Z+ k),
x2(t+ k),y

compact subset Tof [U, + o) ask—>+ oo,
Let

(t+ %)} is uniformly convergent on each

Wis) = E I xi (s+ &) = Inxi(s+ )l +
| Iny(s+ &) - y(s+ ), m= k= K5+ =
0, (3)

by differential mld—value theorem, we have

W(syx>= — {Z [ xi(s+ k) = xi(s+ IOl + [ y(s

+ k) - y(s+ £n)\ (4)
W (sy< —I{Z [ xi(s+ k) = xi(s+ B+ [ y(s
+ k) - yis+ Y. (5)
Let
o b4 Dy, 75 Di
T= mln{rll—(ezl)z— h—rﬁl,r'ZZ— (612)2_ n
! Zl%
733 — (61)2_ s},

clearly T> 0 by (H). For arhitary given X> 0 by

(2), there existsaN = N(XU= K such thatm=
k= N.,t€ R, we have
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Z la(s+ k) - a(s+ I)< ’1122(,
Z | Di(s+ )= Di(s+ B)l< ?’21}4(
. X
Zpl @) z‘el(s+ f) - e(s+ f,)\< ;]ilZL’
X
|r22(s+ S i) << ELz’ ()
|r11(s+ by = r(s+ 9 )
- m(s+ £n)|< 112
|r33(s+ k) = s+ Y+ s+ )
- r(s+ Xin)|< Ez
ST(U ) _h
e < g (6)

Then calculating the upper right derivation of W (s)
along the solution of system (1), we get

D W(s) = sgn[xi(s + By = xi(s+

>]{§ﬂ((jj g‘)) - ((jj é)) J+ sgnlx(st &) -

w2 (s+ )]{);22((;: fﬁj)) );22((;: il;}+ seny (s
b= (st BT {V((“ z)’_ ;((Ss: é"))}

D W(S<E las+ k) = as+ bl +

Zl\Di(H by - Di(s+ fn)\+21 (Z_;)ZG(S+ k)
I+ Lilru(s+

- a(s+ by — ru(s+ B +
|r3|(s+ k) = mi(s+ ﬁc)‘ + Ll ra(s+ k) - (s

+ f{)|+ L[‘Vl3(S+ ﬁz)— r13 (s+ ﬁc)‘+ |r33(s+ f)

- s+ bl - T{Z ‘Xi(S+ k) = xi(s+ £n)‘ +
s+ k) = yis+ Il - Tow(s)+ %X. (7)

We choose aNe= N so that when?€ I andk= No,
we havet+ k= 0 by using comparison theorem on
[- %.t], thus we obtain

W< w(- ke ¥+ 2—)§< w(-
fye "4 o (8)

On the other hand, by (4),
properity of S, we have

wty= {Z xi(t+ k) = xi(e+ I+ [ y(e
+ ﬁ)—y(m fﬂ)\
wi(- < —E | xi(0) — xi(

(5) and the invariant

- li)|+

(0 = y(h - bl <
By(S), “Zfeget
IIZIHI-(H £) - xi(+ )+ lyas )
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- y(+ < ihLe_Th(u 4

namely2
D lxi(er By— (e B+ [y £y - y(e
=1

+ )l <X m= k= No€ I

This implies that {x1(t+ §),x2(t+ %), p(t+ %) }is
uniformly convergent on any com pact subset of [V, +
o) ask—>+ ©© . Let{ui(t),u2(t),v(t)} be the limit
function of {x1(t+ k), x2(t+ k), y(t+ )} . since
Uis arbitarily given, we know that {ui(z),u2(t),v ()}
is defined on R. Due to range {x1(¢),x2(¢) ,y (¢) } &
Sfore= 0, wehaverange {ui(¢),u2(t) ,v(1)}C S.

Similar to the arguement in reference [2], we can
prove that {u (¢) ,u2(¢),v(¢)} isdifferentiable and sat—
isfies system (1).

Similar to the arguementin reference [4 ], we also
can prove that {ui(t),u2(2),v(¢)} is almost periodic
and mod{u (¢),u2(2),v(¢) }Z mod{f1,f2,g}.

By Lemma 2.2 we obtain the conclusion that
{ur (¢) ,u2(2),v(¢t) } is globally attractive with respect
to any other solutions of (1) which lies in B . This
complets the proof of Theorem 1. 1.

2 Stability under the Disturbances from Hull

Consider any hull system of system (1)

x1= )m[ﬁ(% — Ru(t)x1 — Ruis(t)y
- Ci(t) ]+ D (8)(x2 - x1),

X2= x2 [ﬁ% — Ra(t)x2
+ Do (1) (x1- x2),

)./: y[y_i_l(E—?m - Ra(t)x

- Ra(t)y - Gi(t) ],

X
L

R

GO (g

where
Zi(t) € H(zi(t)),R(1)&€ H(n(t)),G(t)€
H(c(t)),E(t)E H(a(t)),D: (t)€ H(Di(t)).
Theorem 2. 1  Assume that the conditions of
Theorem 1. 1hold, then every strictly positive solution
of (1) (including its unique almost-periodic solution) is
stable”! under disturbances from the hull
Proof [Letu(t) = {wi(?),u2(t),v(t)} and x(?)
= {x1(#),x2(2),y(?)} be any two strictly positive so—
lutions of (1) and (9) respectively for£= o such that
< w(t),v(t) < L. xi(t),y(t}= L,i= 1,
2, x(to),u(y)€ S,= t t€ R,

now consider a function
Z | In u (

V(t)= V(u(t - Inxi (1)l

| Inv () - lny(t)| . (10)

It is easy lo learn that

%Elhﬁ(t) - Xi(f)‘ + \v(t) - y(t)| 1<

V(o x ()< 5 D lu@) - x@l+ Iv) -
y(l] (11)
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Calculating the right derivate D' V of V',
(7) we derive (after simp]ification) that

x (1)< Z la(t) - G() +

similar to

D V(u(t)

ZI\DI»(:) - D+ Zl (,)z\el(z) E@0) +
L riu(t) - Rll(t)| + |r31(t) - R31(t)| + ‘rzz(t) -
Rzz(z)\ + |r13(t) - Rs()l + I'ra(t) = Rus(1)l 1-
TIZ Lw(t) = xi(0) + Iv(@) = y(o)l 1, (12)

let P = max{

(Z+)Z=i: 1,2,3).

(12) over [t0,¢], with an application of differentiate
T{Z] L (1) -
w0+ () -yl 1= - ).

Z lu(t) - x()l +

An integration of

inequalities leads to ( Note that -

vty - y()l <

Vu(t),x ()< V(u(to),x (1)) + —(E supl c: (1)

— G+ PZ suple(r) = E(0)l + 25 s Di(1)
- D ) + L %uzP[lr“(t) - Ru(Ol + [mi@) -

R(t)l + lr2(t) = Re()l + |ri(e) = Ro(o)l +
| r(t) — R33(t)| 1},
and henzce

2 |u[t
- E L (o) = xi(o)l + |v(w) - yto)l ) +

lv(t) - y)l <

- x()l +

3

{E ,sgu)p‘a(t) - Gl + PZ1 thu}P‘ei(t) -

i=1

§I~

2

E (1) + Zl supl Di(1) = DI (1) + L supll ru(r) -

Ru()l + lra(t) = Ra()l + lra(t) - Ra(t)l +
|r13(t) - R13(t)| + \m(t) - R33(t)‘ 1}.
Now for ar%;’X> 0, if we chooseW> 0Osuch that

W< mm{xz

51> 51 SLp° SI° >}, this completes the

proof.
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