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Abstract Let G be a finite group. Using the classification of the finite simple groups we obtain in—

formation on the structure of G under some assumptions on the lengths of conjugacy classes of ele—

ments of G of prime power order.
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In this note G denotes always a finite group. Let
Con( G) be the set of all the conjugacy classes of G
and let Cori ( G) be the set of the conjugacy classes
of elements of G of prime power order. For a fixed
prime p the conjugacy class of a p wegular element is
called p —regular class, and we put

Cop (G)= {d CE Cod (G)andCisap -regu-
lar class}

In reference [1], R. Baer characterized all finite
groups having the property: 1l isa prime power for
each CE Con ( G).D. Chillag and M. Herzog de—
scribed the structure of G under some assumption on
Con ( G)m. Y. Ninomiya classified finite nonsolvable
groups with exactly three p—regular clases . Our main
purpose in this note is to improve the following well-
known results in reference [2}

(1) Let p be a prime. pt | Cl for each CE€
Con(G) if and only if G has a Sylow p —subgroup in its
center.

(2) 14 | C for each CE Con( G), then Gis
solvable.

(3) I Cl s a squarefree number for each cec
Con( G), then Gis supersolvable and dI(G)< 3,
where d1(G) denotes the derived length of G, and
both | G/F(G)| and | F(G)/ | are squarefree num-—

bers.
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The proofs of our theorems require the following
theorem, which is a consequence of the classification of
the finite simple groups.

Theorem (FKS)'!
tation group on a set Kwith | K[ > 1. Then there ex—

Let G be a transitive permu—

ists a primep and an elementx€ Gof order a power of
p such thatx acts without fixed point onK .

Results and Proofs
theorem of this paper is inherited by normal subgroups

The hypothesis of every

and quotient groups by Lemma L 1 of reference [2],
so we can use induction freely in our proofs.

Theorem 1 Letp be afixed prime. Then pf e
for each CE  Con (G) if and only if Ghas a Sylow p-—
subgroup in its center-

Proof If G has a normal subgroup N such that 1
< N < G, then induction implies that PN IN<
Z(GIN), where P& Sylp(G), and that P<C
Z(PN). HenceP4 Gand P are abelian. Thus the hy—
pothesis implies that G= PX O, (G) as required. We
therefore may assume that G is a nonabelian simple
group.

Let 2 x€ Z(P) andClo(x)= {x*l g€ G}.
Then Gacts onCls(x ) by conjugation and Gis a transi—
By FKS-theroem
there exists a prime 7 and element y& G of order a

tive permutation group on Cle(x) .

power of 7 such that

(x"yY# x" Vhe G
On the other hand, pt | Cle(x)| becausex € Z(P) ,
so77 pand hence pf | Clo(y)| by hypothesis. From
thiswe have P< Co()*) for somegE G, in particular
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y centrarizesx® . This isa contradiction and the proof

is complete

Theorem 2 Ietp be the smallest prime divisor of
|G . przT | d for eachCE Corp (G), thenGisp-
nilpotent, in particular, G is solvable.

Proof W e firstly show that Gis not a nonabelian
Then by Feit-
Thompson s theorem on the solvability of a group of

simple group. Suppose that G is.

odd order, G has at least one central involution, say #,
andp= 2.

Asin the proof of Theorem 1, thereis a
prime’7 p= 2and an element X< G of order a power
of r such that (¢*)% u° for any g€ G. On the other
hand, by hypothesis| G* Co(x)| =< 2. LetSbe a Sy—
low 2-subgroup of G such that u< Z(S) andletT be a
Sylow 2-subgroup of Co(x) . We have "< S for some
h&€ Gand obviously r'<< CG(xh)- Ifu€ T, then
u€ Co(x") and so (' ] ) = W' This is a contradic-
tion. Ifu€ 7', then| St T'[ = 2. By a lemma of
Thompson|5| , some conjugate of # , sayu®, lies in 7.
Then o € Co(¥') so that (" ) = "

contradiction.

, again a
The above argument shows that G can
not be any nonabelian sim ple group, and induction im-
plies that Gis solvable.

Let M be a maximal subgroup of G and M4 G.
Then G/M is of orderq , whereq is a prime. Ifg= p,
induction implies that G is p—nilpotent. We therefore
may assume that 7 p. Again applying induction we
also may assume thatM= PE Sylp(G) . ThusG=
P <x> , whereP4 Gandl x| = ¢ p . By hypothe-
sis,

PG Ge(x)l = [Pt Cr(x)l
0

| Gt Co(x)l = 1, orp
which implies that Cé(x)4 G and hence < x > 4 G.
In particular, G is p— nilpotent. This completes the
proof.

Corollary3 If 4 | d for each CE Con (G),
then Gis 2mnilpotent.

Lemma 4 Let p be a prime. przT | Cl for each
CE Comw (G) and if G is nilpotent, thenP /0, (G) is
an elementary abelianp —group, where P€ Sylp(G) .

Proof By induction we may assume that O» (G)
= 1. Hence G< F(G< 0y (G) and G= PO, (G),
where P€ Sylp(G) . Again applying induction we al-
so may assume that G= PF(G). Put G= GH(G)
and HH(G) = 0,(G). Then H= O(G)4 G,
where 0€ Sylp(H) . WehaveG= No(Q)H(G) =
N6 (Q) . HenceQ< O, (G)= 1, namely O,(G) = 1
and pf |H( G)| . By induction we may assume that
H(G)= 1. Thisimplies that F(G) = NX ---X N,
is a direct product of elementary abelian groups N .
Anyx€U 1 Niis of order a prime and X is p— regu—
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lar. Noting G= PF(G) we havel Pt Cr(x)I<< p by

hypothesis. Thus

HP=< [),Cr(x)= Cr(F(G) = 1
which implies that P is an elementary abelian p—group.
This com pletes the proof.

Theorem 5 If for any prime p and any C €
Corp (G pzT | Cl , then G is supersolvable and
G/F(G) is a direct product of elementary abelian
groups.

Proof If G contains a normal subgroup of prime
order, then induction implies that G is supersolvable.
Thus we may assume that G contains no normal sub-
group of prime order. By Theorem 2, Gis solvable. Let
N be a minimal normal subgroup of G. Then N is an
elementary abelian group of orderp” for some prime p
and anintegern= 2. If N is not contained in some
maximal subgroupM of G, then G= MN isa semi-di-
rect product. Then M = GIN is supersolvable and
hence M contains a normal subgroup Q of prime order.
SetO= < x> . AsQisnot normalin G,M= N¢(Q)
and therefore Cé(x) (1 N = 1. Consequently
PlIING(x)* Gx)lI] G Ca(x)l . On the other
hand, M= N¢(Q) also implies that x is ap’ —element,
by hypothesispzT | G* Co (x)| . This is a contradic—
tion. Thus N is contained in every maximal subgroup
of G, so that the Frattini subgroupH(G) of G is non-
trivial and by induction G/H(G) is supersolvable, and
hence G is supersolvable. Other conclusion of the theo—
rem follows from Lemma 4.

Corollary 6 1If| Cl is a squarefree number for
each CE Con (G) , then Gis supersolv able, dI (Gy=
3,G/F(G) is a directproduct of elementary abelian
groups and| F(G) | isa squarefree number-.

Proof By Theorem 5 we need only show that
dI(G)<< 3 and | F(G)/| is squarefree number. We
have G/< F(G) . AsF(G) satisfies the hypothesis of
the theorem, by reference [2], | F( G),| is squarefree
number. HenceG = 1 . namely dI(G)< 3.
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