广西科学 Guangxi Sciences 1998, 5 (4): 27ト 272

HoNi2Ge2的 X射线粉末衍射数据^{*} X-Ray Powder Diffraction Data for HoNi2Ge2

严嘉琳 曾令民 郝建民** Yan Jalin Zeng Lingmin Hao Janmin

(广西大学材料科学研究所 南宁市西乡塘路 10号 530004)

(Institute of Mat. Sci., Guangxi Univ., 10 Xixiangtanglu, Nanning, Guangxi, 530004)

摘要 给出尚未出现在 JCPDS-PDF上的 HoNi2Gee相的 X射线粉末衍射数据。该化合物属四方晶系,空间群为 I4/mmm, a = 4.0303(1)Å, c = 9.7745(4)Å。 每个晶胞中有 2个化合式量。衍射数据指标化可靠性因子 $F_{\mathcal{D}} = 54.6(0.009357)$.

关键词 HoNi2Ge2相 X射线衍射 粉末衍射数据

中图法分类号 TG 113.12

Abstract X-ray powder diffraction patterns and related crystallographic data for compound HoNizGez are reported. The compound HoNizGez is tetragonal with lattice parameters a =4. 030 3 (1) Å , c = 9. 774 5 (4) Å , space group I4/mmm and 2 fonmual units of HoNizGez in unit cell. The Smith and Snyder figure-of-merit F²⁹ for this compound is 54. 6 (0. 009 357). Key words HoNizGez phase, X-ray diffraction, powder diffraction data

三元稀土化合物 RET₂X₂(RE 稀土元素,T: 过 渡金属,X: IV族元素)在过去几十年里得到人们广 泛的研究 Fukuhara等人^[1]报道了 CeNi₂Ge2具有磁 和传输性质的各向异性,Ref^{12,3]}指出具有 ThCr₂Si₂ 型结构的化合物大多有各式各样的磁性能,是潜在的 磁性功能材料 PDF(Powder Diffraction File)是进 行物相鉴别的有力工具,Mayer等人^[4]研究了化合物 EuNi₂Ge₂的 X射线粉末衍射数据,其研究结果被收 入 PDF中(PDF27-212)。该化合物具有 ThCr₂Si₂型 结构,属四方晶系,空间群为 I4/mmm 迄今为止, PDF中未见有化合物 HoNi₂Ge2衍射数据的报道。在 本工作中,我们研究了 HoNi₂Ge2相的 X射线粉末衍 射数据。

1 实验方法

制备合金试样用的原材料纯度为: Ho 99. %, Ni 99. 99%, Ge 99. %, 合金试样是在高真空 (约

1997–10–20收稿。 lÅ = 10⁻¹⁰m

* 国际衍射数据中心资助项目和广西自然科学基金资助项目。

10³Pa) 电弧炉中高纯氩气保护下溶炼的, 使用水冷 铜坩埚,反复熔炼 5次以保证成分均匀。将熔好的合 金块用钽片包裹,密封于高真空石英管中在1000℃ 进行为期 10~1的均匀化退火,然后以 10℃ /1的速率 冷却至室温 合金试样的成分经电子探针分析证实为 HoNi2Gea 粉末试样的制取是在玛瑙研钵中丙酮保 护下仔细研磨而成的,粒度约 10⁴ m 将粉末密封于 抽成真空的玻璃管中在 500°C保温 5 d后以 10°C /h 的速率降至室温即可用于 X射线衍射。实验采用日 本 Rigaku D/max-RC型带石墨单色器转靶衍射仪, Cu Ka 辐射 (波长 λ= 1.540 60Å), 管压 50 kV, 管 流 180 m A, 发散狭缝 1 (°), 接收狭缝 0.15 mm 收 集衍射数据前,仪器灵敏度经过由美国国家标准局提 供的 N IST SRM 1976标样进行校准。测量强度时, 用 Rigaku公司提供的高纯 Si粉作内标,采用国际衍 射数据中心建议的 Rear loading sample装样技术将 粉末试样装入铝框试样架,以减少试样的择优取向。 在 $10(°) \sim 145(°)$ 2 范围内对试样进行阶梯扫描, 步阶为 0.02 (°),每步停留时间为 2 。测量时温度 为 $25\pm 1^{\circ}$ 、试样衍射的 2° 值用 Si内标校正确定,对 于 KT, KT, 未分离的低角度线则采用 D/max标准软 件中的 KT,,KT,分离程序进行处理,各条衍射线的强

^{* *} 天津电子材料研究所,天津,300192(Tianjin Electronic Material Research Institute, Tianjin, 300192).

度是由背底以上的峰高确定的,并以最强线的百分数 来表示。

表 1 HoNi₂Ge₂的 X射线衍射数据

$\mathcal{D}_{\rm obs}/(°)$	d /(Å −)	Η	Κ	L	I / I_0	△ 29 /(°)
18. 120	4. 892	0	0	2	< 1	- 0. 017
23. 879	3. 723	1	0	1	2	0. 017
31. 367	2. 850	1	1	0	26	0. 003
35. 399	2. 534	1	0	3	100	0. 001
36. 472	2.462	1	1	2	71	0. 005
36. 751	2. 444	0	0	4	7	0. 002
44. 956	2.015 0	2	0	0	53	0. 009
49. 090	1.854 3	1	1	4	17	0. 021
51. 955	1.758 6	1	0	5	34	0. 010
58. 484	1.5769	2	1	3	35	0. 012
59. 401	1.5547	2	0	4	2	0. 000
65. 448	1.424 9	2	2	0	8	0. 001
66.011	1.414 1	1	1	6	24	0. 010
71.096	1.324 9	2	1	5	23	0. 012
74. 374	1.274 4	3	1	0	3	0. 003
76. 664	1.242 0	3	0	3	5	0. 001
77. 325	1.233 0	3	1	2	15	0. 018
78. 155	1.222 0	0	0	8	7	- 0. 012
86. 635	1.122 8	1	1	8	4	0. 014
93. 532	1.057 3	3	2	3	7	0. 003
99.714	1.007 7	4	0	0	3	- 0. 012
100. 227	1.003 9	3	1	6	5	- 0. 012
105. 105	0.970 26	3	2	5	4	0. 018
110. 720	0.936 26	4	1	3	4	0. 001
112. 310	0.927 46	2	2	8	6	0. 012
117. 472	0.901 16	4	2	0	4	0. 009
121. 712	0.88196	3	1	8	2	0. 008
123. 555	0.874 26	4	1	5	2	0. 014
125. 167	0.86776	1	0	11	3	- 0.003

2 X射线粉末衍射数据

表 1为 HoNi2 Gez 的 X射线粉末衍射数据,所有

(上接第 249页 Continue from page 249)

余的维的方法之间,存在着密切的联系。那 5种 10维弦论假 想实际上只是从不同角度表述的同一种基本的 11维假想。

高级研究所的理论物理学家西伯格说:"这让我想起了盲 人摸象的故事。我们以前总是考虑不同的侧面,却看不到全 局。"

在把众多的假想汇集成为一种假想的过程中,物理学家 们意识到,他们的方程所描述的世界不仅是由弦、而且是由薄

的衍射线均能按四方晶系用 TREOR指标化程序成 功地进行指标化, 点阵常数经最小二乘法精化后得 a = 4.0303(1)Å, c= 9.7745(4)Å。由指标化可 靠性因子公式 $F_N = (1 / \bigtriangleup 2) (N / N_{\text{poss.}})^{[5]}, 算得$ F29 = 54.6(0.009357)(式中 N为观察到的衍射线的 总数目,Nposs 是数到第 N 根观察线所可能有的独立 衍射线的数目, $|\bigtriangleup \mathfrak{D}| = \sum |\mathfrak{D}_{obs} - \mathfrak{D}_{cal}|/N$), 说明 该衍射数据指标化的可靠程度高 从表 1可见 HoNi2 Ge2的 X射线衍射消光规律与空间群 I4/mmm 的完全相符,参考 $ThCr^2Si^2$ 型结构的原子位置进行 理论衍射强度的计算.结果表明衍射强度的计算值和 观察值符合得较好,表明 HoNi2Ge的晶体结构与 EuNi2Ge的类同。HoNi2Ge的晶体为四方晶系,空间 群为 I4/mmm, 晶胞参数 a = 4.030 3 (1) Å , c= 9.774 5 (4) Å,每个晶胞中有 2个化合式量,计算 密度 $D_x = 8.942 \text{ g}^{\circ} \text{ cm}^{-3}$

参考文献

- Fukuhara T, Maezawa K, Ohkuni H et al. Anisotropic transport and magnetic properties of CeNi2Ge2, J Mang Magn Mater, 1995, 140-144; 889-890.
- ² Szytula A, Leciejewicz J In Handbook on Physics and Chemistry of Rare Earth, North Holland, Amsterdam, 1989, 12 133.
- 3 Pearson W B, Villars P. Analysis of the unit cell dimensions of phases with the BaAi4 (ThCr2Si2) structure I rare earth phases of manganese, iron, cobalt, nickel or copper with silicon or germanium. J Less~ Common Met, 1984, 97 119~ 132.
- 4 Mayer I, Felner I. Europium silicides and germanides of the EuM₂X₂ type crystal structure and the valence states of europium. J Phys Chem Solids, 1977, 38 (9): 1031~ 1034.
- 5 Smith G S, Snyder R L. F_N: a criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing. I Appl, Cryst, 1979, 12 60° 65.

(责任编辑: 黎贞崇)

膜状的东西所组成的。这种薄膜状的东西叫做 p-膜 (p表示 维数),人们通常想到的薄膜是延伸于三维空间内的二维表面 (就像床单)。这种情况现在被称为 2-膜 点是 0-膜,线是 I-膜 依次类推,便可以得到 3-膜 4-膜、5-膜,一直到 9-膜:即伸展于 10维空间内的 9维表面。

以 19世纪数学家 秋利克雷姓氏的首字母命名的 D-膜 是一种特殊类型的膜,它对于 M 理论尤其重要 D-膜(也多 (下转第 281页 Continue on page 281)