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Abstract

The basic character of prime number order cycle graph was studied by the method of

construction, and the new lower bounds about some Ramsey numbers were obtained.
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It is a famous difficulty to determine Ramsey
number in combination mathematics and graph theory
(see [1~97]). The comprehensive document [10]
listed that the accurate value and the upper and lower
bounds of some Ramsey numbers have been known
currently. The basic character of prime number ordér
cycle graph was studied by the method of construc-
tion, and the new lower bounds about some Ramsey
numbers were obtained.

Theorem 1 Convention, for the Ramsey number
R(ky,kyyo5k,32) , it is written simply as R,(£) when
by =1k, ==k, =k, We have

I. Ry(3) =102, Rs(3) = 278,

R;(3) = 492, Ry(3) = 578,

R,,(3) = 1182.

I.R;(4) =128, R, (4) = 458,

~ coresidual to Z, .

Ry (4) = 942,
Ry(4) = 9698,
Ry, (4) > 28298,
Ry (4) = 84962,
R, (4) = 155378,
Rqs(4) = 230552,
Ry, (4) == 345090.
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R;(4) = 3458,
Ry (4) > 17682,
R (4) = 47798,
R,,(4) == 87870,
Rys(4) = 207482,
Ry, (4) = 287702,

The technical terms of numbet Theory, Group
Theory, Graph Theory quoted in the paper can be

seen in references [11, 12, 1].
1 Linear transformation of cyclic graph

‘Set integer numbern =2, prim'e. number p=
2mn+41 ,note Z, = {—~mn,+=, —1,0,1,+,mn } as
the minimum absolute value’s complete system of
residues of module p , convention, in the following,
except special decalaring, all small English letters refer
to module p integer number, and results of the opera-
tion of any integer number’s addition, subtraction,
multiplication, division (for simplicity and conve-
nience, we still use “=") must be taken module p
Assume g is primitive root of p.
note
4 j <2 mn}

g ={zrlz=g", 0 j<2m}. 0K
ab,a € a;,b € a;}

As we know, Z, is finite field, Z, is 2 mn orders

={x|lz=g,0<
i<n

aq; = {z|z =

. commutative group in the operation of multiplication of

module p coresidual. o, is 2 m orders cyclic groups
whose generating element is g* . It is normal subgroup
of Z,. a;is cosets of a,,

7;:/“0 = {ap,,a,_;}
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is quotient groups of Z, , and has:
' Proposition 1
+ j (mod n ) and 0 << r < n (convention, in the fol-

e, = a;;, herea,,; = a,, r=1

lowing, the subscript about «; all model these: make
module 7 coresidual and sum up to the min nonegative
system of residues of module » ).

Definition 1

vertexes, the set of vertex V= Z, , the set of side E¢

Assume G is complete graph of p

= {@y,***,a,_, } (that is to say, the colores named as
0,1, +, n— 1 make colouring every edge) : If and on-
lyifx — y € «;, the two vertexes X,Y , are called as
@; adjacency (the united side of the vertex X and Y is
coloured ¢ ), the complete graph that is named every
vertex and provided the method of every edge’s colour-
ing is called P orders cyclic graphs.

Definition 2 In p orders cyclic graphs G. 2> 2
different vertexes x,y,+,2 , if any two vertexes are
; adjacency, we say that they make a % orders ¢; cligue
( k orders complete subgraph of every side coloured
). Note them (x;y,**,2);. When they wouldn* be

" misunderstood, we omit @; cligue’s subscript, note
them simply as (z,y,*,2). z,y,,2 are called ele-
ments of the cligﬁe. The two cligues having the same
element (Whether their element sequence is the same

- or not) are considered as one cligue and have not any
difference. S

Definition 3 Giving two p orders cyclic graph G
and G' . If there is monogamy relation f between V¢

‘and Vi , and f map ¢;cligue in graph G onto @;cligue in -

graph G’ . Then the two graphs are called isomorphic.
Convention, two isomorphic p orders cyclic graphs (all
of their vertex graphs gre Z, ) aré considered as one
graph. Isomorphic map f stated above is called trans-
formation of graph G . V

Proposition 2 Assume a € @;, b € Z, , thus
f(z) =azx+b (z€Z,,f(z) € Z, ) makes transfor-
mation (linear transformation) of graph G. It trans-
forms % orders «; cligue to & orders a;4; cligue.

Proof Noticea € ¢;>a7#0, foranyz,y € Z,
» we have :

f(x) = f(ySalx — y) = 0z = y;
That is to say that f make 1—1 transformation of ver-
tex sets V. According to Proposition 1, we have
z—y€ a&f(x) — f(y) =alzx — y) € ay;
That is to say that two adjacent «; apexes in graph G
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transform other two @, ;adjacent @, apexes. So f trans-
form ¢;cligue in gralph G to the same orders a,,.; cligue.
Proof is over.
Proposition 3 If transformation f transforms £
orders ; cligue (z;,z,,**, 1), to k orders q; cligue (y,,
Y2s**sM); s We note:
Fxyszysorszid)i = (Yroypse s V) je
here, y.(z) = f(z,), 1 .< t <L k. Thus for transfor-
mations '
[i@) = (2 — )Wz — z)).
and f,(x) =1 — z , we have:
1@y zzsm,x)i = (0,100, 31)0 (.
F200, 1,000,310 = (0,1,0,1 — %), @).
Proof From Difinition 2 we knowx, —z, € ¢«;,
from Proposition 1 we know (x, — ;) 7! € a_; , from
Proposition 2 we know f; transform «; cligue to a,cligue
and formula (1). Noticing that e, is 2 m orders cyclic
group whose generating element is g". So g™ # 1,
but (g™)2 =1, wecangetg™ =— 1 € q,, from
Proposition 2 we know that f,(x) = (— 1) +x + 1
transforms @, cligue to a, cligue and get formula (2).

Proof is over.

2 Normal Subgroup ¢, and Lower Bounds of
R,(3) and R,(4)

As we all know; there is a famous theorem in
graph theory——Ramsey Theorem :For any n 2> 2 pos-
itive ingegers: %, ,k;,*,4, == 2 , there is the minimum
positive integer R , when S => R , we make the side of
S orders complete graph G any colouring with n kinds
of colors. Then there must exist &; orders complete
subgraph whose every edge is coloured with the same
No. i color. Hereiis one of 1, 2, *, n.

Positive integer R stated above is called Ramsey

_number R(kl ,kzy“',k,.;z) . When kl = kz = e = k"

= &, we simply note it as R, (%) and we have.
- Theorem 2 In p orders cyclic graph G , note the

positive element of «, as generator subgroup: .

af = {z|x € qpand x>0 }.
If foranyz € «f , z — 1 € of for ever, then R, (3) =
p+1. o

Proof On the condition of Theorem 2, we prove
that there doesn’ exist any a certain three orders g

cligue. Otherwise, assume there exits a three orders «;
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cligue ( z;,z;,2; ), according to Proposition 3, we
know

F1(zyy 25 29): = (0,1,a),.

f:(0,1,a), = (0,1,1 — a),.
here a = f,(x;) . According to Definition 2, we know
aya—1,1 —a,(1 —a) — 1€ & . Thus whena €
al , we can geta — 1 € o] or whena € a] , we have
l—a€afand (1 —a) —1=—a€ e . The two
kinds of results are in contradiction with the condition
of Theorem 2. So we can prove that there doesn’t ex-
ist any 3 orders ¢, cligue. According to Ramsey Theo-
rem we know R,(3) <C pis impossible. So we can get
R,(3) = p + 1. Proof is over.

Theorem 3 In p orders cyclic graph G, we note
subset of ¢, as:

0= {z|lxr € qyandxz — 1 € q,}
» 0*r={zlx € efandx — 1 € o }
Assume 0 % &, a € 0, we order

fa) ={z|lr € fandxr —a € a, }
If for any a € 61, 8(a) = I for ever, thus R,(4) =
p+1.

Proof - Assume that there is a certain 4 orders q;
cligue (z,,z,,2;5,2,) , from Proposition 3 we know

Fi(x s xpsxy,x4); = (0,1,a,0),.

f:(0,1,a,6), = (0,1,1 — a,1 — b),.
Herea = fi(x3), b= fi(z,).
tion 2 we know a,b,a —1,6—1, —a, — 6,1 —a,l
—b,b—a€ a,. Soa,b,1—a,1 —b6b€& fandb € §(a)
“ B, 1—5b€ (1 —a) # & . No matter thata €
6% ,ora € 0%, thatistosay: 1 —a € " . The two
situations are in contradiction with the condition of
Theorem 3. '

According to Defini-

Then we prove that on the condition of Theorem
3, there doesn’t exist any 4 orders g; cligue. From
Ramsey Theorem, we know R,(4) <C pis impossible,
and there is only R,(4) = p + 1. Proof is over.

Because normal subgroup ¢, and its subset is an
important role on the lower bound’s estimation of
R,(3) and R,(4) , We initially study their structure.
@, = {z|x € of or —x € af }.

= {r|lz€ 6 orl —x€ 6" ; or when2 € 6+,
x =271}

Proof

Proposition 4

From the proof of Proposition 3, we
know — 1 € «,. From Proposition 1 we know
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a€ ay(—1)+a=—a€a,
From the proof of Theorem 2, we knowa € 51 —a
€ . This indicates that the structures of @,and @ have
a certain “symmetry”: From one half, we can get the
other. But in set @ , we should think aboutl —x =z
(obviously z <C 0 ) that is special situation, here x =

27! and from Proposition 1 we have:
2€ ;2 € qpand 27 — 1 =—2"1 € q,

Notice 1€ a, , there is
2€aqe2€0te2ed.
Proof is over.

According to Proposition 4, from af we can easily
make @,and 8%, and then, we can make . With The- .
ofems 2 and 3, we can get a simple, convenient and
easily operating mathod. When we study the lower
bounds of R,(3) and R,(4) . Guided by the strict the-
ory, the writer has made a lot of achievments of Theo-

rem 1 with computer.
3 The proof of Theorem 1

Proposition 5§ R;(3) = 102.

Proof Setn=15 , prime number p = 101 , thus
g = 2 is the minimum primitive root. g° = 32 is the
minimum generator of cyclic groups @, , we order:

af = {z|x=2% (mod 101), and x> 0,0 <\i <
10} = {1, 6, 10, 14, 17, 32, 36, 39, 41, 44)
Obviously for any x € e there isz — 1 € «; for ever,
from Theorem 2, we get Proposition 5. Proof is over.

Proposition 6 R;(4) =>128.

Proof Set n» = 3, prime number p = 127.
Then we get that g® = 5 is the minimum generator of
cyclic group @, , thus:

¢f = {z|z="5 (mod 127), and 2> 0,0 i <
21} = {1, 2, 4, 5, 8 10, 16, 19, 20, 25, 27,
32, 33, 38, 40, 47, 50, 51, 54, 61, 63}

6= {2, 5, 20, 33, 51, —63, —50, —32, —
19, —4, —1}

We can easily test and verify: for any a € §*=
{2,5,20,33,51}, 8(a) = & for ever. According to
Theorem 3, we get Proposition 6. Proof is over.

According to the above, we can prove all results
about R,(3) and R,(4) in Theorem 1. For simplicity
and convenience, we list the n,p and the minimum

generator g” of a, and the numbers |8} of the elements
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of set @ about R,(4) in Theorem 1 as following:

Table 1 About R, (3)

n Prime p g

5 101 32

6 277 4

7 491 12

9 577 20

10 1181 4

Table 2 About R, (4

n Prime p g" 161
3 127 5 11
4 457 6 20
5 941 12 24
6 3457 2 65
8 9697 4 92
10 - 17681 2 93
12 28297 2 125
14 47797 37 128
20 84961 5 107
22 87869 55 144
24 155377 27 191
28 207481 17 167
29 230551 93 200
30 287701 104 198
32 345089 18 264

All the results of Theorem 1 have been verified

and printed out with the computer.
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